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Flow dynamics in the stack and heat exchangers of a standing wave thermoacoustic
engine is studied using two-dimensional direct numerical simulations. The numerical
approach is based on asymptotic coupling in the low Mach number limit of a nonlinear
dynamic model in the active cell with linear acoustics in the resonator. Computed results
of the initial amplification and of the periodic regime eventually reached are shown. For
the former, results show the existence of a critical temperature for which the system
becomes unstable so that the engine starts, which is strongly dependent upon the load.
Analysis of the results in the periodic regime shows the importance of vortex dynamics
and the role of vortex shedding at sharp heat exchanger corners.

Introduction. A simplified model of a loaded thermoacoustic engine consists
of a long tube closed at one side and loaded at the other side, inside which the
active cell is placed. The active cell comprises a stack of parallel plates placed
between two heat exchangers. One heat exchanger is connected to a hot source
and the other to a cold source. The combined effect of pressure fluctuations and
oscillating heat exchange in the boundary layers on the stack plates provides a heat
engine effect [1–3]. A multiple scale formulation allows for the global compressible
flow problem to be reduced to a dynamically incompressible problem in the active
cell, with boundary conditions obtained from linear acoustics in the resonator. The
details of this analysis are found in [4, 5]. In the literature, there are few studies
dedicated to nonlinear hydrodynamics inside the active cell. The purpose of this
paper is to show and analyze numerical results on flow dynamics in the periodic
regime, such as instability and vortex dynamics. After a brief introduction of the
model and numerical method, the computed results of the periodic regime are
presented and discussed in two steps: first, the influence of the load on the onset
temperature and saturation is presented, validating the choice of the load value.
Then, the flow patterns, temperature field and vorticity field are analyzed and a
possible mechanism of the observed instability is discussed qualitatively.

1. Physical model. The geometry consists of a long resonator with length
Lres, within which an active cell of characteristic stack length Ls is placed. The
active cell consists of a stack of parallel plates and two heat exchangers (heater and
cooler). The heater and the cooler are also made from parallel plates. We assume
vertical periodicity, so that the simulation can be reduced to a domain consisting
of two half-plates and the space between them, and the corresponding fraction
of the resonator cross-section. The active cell is short compared to the resonator
length, therefore, two characteristic length scales are to be considered, Lres and
Ls. The geometry of the entire resonator is shown in Fig. 1 (top). The resonator
dead end is located at x̂ = −lL, while the other end consists of a load modelled
as a real impedance f at the fixed location x̂ = lR, with p(lR, t) = fu(lR, t). The
active cell is considered as a discontinuity section positioned at x̂ = 0.
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Fig. 1. Geometry of the linear acoustic system (top) and of the active cell (bottom).

As to the stack scale, the geometry of the active cell is shown in Fig. 1
(bottom) and boundaries with the resonator are located at infinity on the scale
associated with the active cell. That represents the simulation domain. In the
current case, the length is 5Ls and the height is H.

The multiple scale formulation is obtained with a perturbation asymptotic
method described in detail elsewhere [4, 5]. Key assumptions are that velocities
are small compared with the speed of sound, and that the flow sweeps a length
of the order of the length of the stack. These assumptions lead to a reference
Mach number M = Ls/Lres. Under these assumptions, the flow in the resonator
is characterized by lossless linear acoustics with all dissipation concentrated at the
loaded end.

The flow in the active cell is described by a nonlinear dynamically incom-
pressible model.

In the heat exchangers and stack, at leading order and at order M , the mo-
mentum leads to ∇p(0) = 0 and ∇p(1) = 0 (here the superscripts characterize the
magnitude of the pressure contribution in a power series expansion in the refer-
ence Mach number M). Momentum at order M2 plus leading order conservation
of mass and energy result in:

∂ρ

∂t
+∇.(ρu) = 0

∂(ρu)

∂t
+∇.(ρu⊗ u) = −∇p(2) +

1

Re
∇.τ (1)

ρ

[
∂T

∂t
+ (u.∇)T

]
=

1

Pe
∇2T

in which the thermodynamic properties have been scaled by suitable reference
values, such that p(0) = ρT = 1. The stress tensor τ = [∇u + (∇u)t − 2

3 (∇.u)I]
and the reference Reynolds and Péclet numbers are based upon the reference
velocity, the stack length Ls, viscosity and conductivity at the reference state. In
the solid plates (stack and heat exchanger plates), the conduction equation is

∂T

∂t
=

1

Pes
∆T, (2)

with Pes = Peαref/αs, where αref and αs are the thermal diffusivities at the
reference state, respectively, in the fluid and in the solid.

In the heat exchangers and stack, ∇p(1) = 0, so that they are transparent to
acoustic pressure, which is then the same on both sides. Integrating the energy
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equation over the heat exchangers and stack results in

(u− − u+)H +
1

Pe

ˆ
∇T · nds = 0, (3)

with H being the height of the simulation domain, and u−, u+ the velocities at
locations xL and xR. In the local scaling, xL → −∞ and xR → +∞, while in the
scaling that describes resonator acoustics they correspond, respectively, to x = 0−

and x = 0+. Velocities u+ (resp. u−) have the same values in both problems.
This completes the boundary conditions [4, 5].

At solid boundaries, the continuity of temperature and heat flux and no-slip
condition are imposed. A temperature T = Th is imposed on the heater plates,
and T = Tc is also imposed on the cooler plates. In the stack plates, the heat
conduction equation is solved. All active cell boundaries other than the heat
exchanger walls are considered adiabatic.

Matching these two solutions in the standard way provides appropriate bound-
ary conditions to the flow inside the heat exchanger section, depending of the im-
pedance value at the load end. From the standpoint of resonator acoustics, the
heat exchanger section is transparent to pressure but provides a source of volume,
as a result of the thermoacoustic effect.

2. Numerical solution. The numerical solution is based upon a finite
volume code solving the Navier–Stokes equations under the low Mach number
assumption [6]. The code originally was developed for non-Boussinesq convection.
It can handle density and temperatures varying at leading order, together with
spatially uniform pressure fluctuations at up to leading order.

Diffusion is solved implicitly and advection is explicit. Accuracy is second-
order in both space and time. On both sides of the lossless resonator, acoustics
can be expressed as the combination of two plane waves that move respectively
left and right at the speed of sound. The boundary conditions at both tube
ends determine a relationship between the incoming and the outcoming Riemann
invariants. These are carried on characteristics along the tube. The boundary
conditions at each end of the active cell correspond to the value of the arriving
Riemann invariant, which is thus functions of the outgoing Riemann variable at
an earlier time. The acoustic pressure does not appear in the formulation for the
active cell, but it affects the Riemann variables hence the boundary conditions.

A Cartesian regular two-dimensional mesh of the active cell is used in the
current work (4096×64 grid points, i.e. 9 grid points across the stack half-plate
width, and 37 grid points along the gap between the heat exchanger and the
stack). The numerical calculation is performed with the following initial condition:
a random noise for the velocity field in the whole resonator and a steady state heat
conduction condition for the temperature field inside the active cell and a constant
temperature in the resonator (Th for the hot part and Tc for the cold part). In
order to satisfy a stability criterion (CFL=0.025), the time step must be reduced
with the increased horizontal velocity, so that from the initial state to the periodic
regime, the whole simulation could be extremely long (about 400 reference acoustic
periods), with 200 (initial amplification) to 10 000 (periodic regime) time steps per
reference acoustic period.

3. Results.

3.1. Reference configuration. Results were obtained for an existing ther-
moacoustic engine [7]. The active cell was inserted in a long resonator tube closed
at both ends. Viscous dissipation inside the resonator plays the role of the load.
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Table 1. Geometry and operating conditions.

Lres [mm] Ls [mm] H [mm] Lg [mm] p0 [kPa] Th [K] tac [ms]

1000.0 35.0 1.06 1.54 44.0 351.6 1.0

The experiment used helium under pressure p0 = 44 kPa, and the cold temper-
ature was taken as the reference temperature Tc =293K. The reference acoustic
time tac was approximately equal to 1ms. All parameters of the experimental
configuration are listed in Table 1. The gap Lg between the stack and the heat
exchangers was arbitrarily chosen to be equal to twice the plate spacing.

Analysis of the numerical results for initial amplification shows that the load
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Fig. 2. Top: time evolution of acceleration and velocity at the left entrance of
the simulation domain, evolution over one acoustic period, evenly spaced selected times
labelled from 1 to 21.. Bottom: the temperature field over the entire simulation domain
at times 8, 12, 16, 21 (top to bottom). Color code shown at bottom.
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plays an important role in the onset of a thermoacoustic engine. For a given value
of the load f and for each acoustic mode, there is a corresponding critical heater
temperature. The limit when f is infinite corresponds to a closed end and the limit
when f is zero corresponds to an open end. In order to validate the load model, we
identified the load value corresponding to a given experimental setup p0 =44 kPa
and Th =662K from the experimental stability curve of the fundamental mode [7].
We obtained a load value of 171.36MPa· s/m3. Numerical simulation for that case
indicated that the first mode (i.e. the fundamental) was the most unstable, which
is in agreement with the experiment.

When the heater temperature was further increased for the same mean pres-
sure value, the numerical simulation with the same load value gave the next critical
heater temperature Th =820K, and both modes 1 and 2 were unstable, again in
agreement with experimental results [7].

To study the periodic regime for a given value of f , we had to choose a heater
temperature just above the critical value. By trial and error, we have found
that high values of the heater temperature (for example, Th =743K) require
long numerical calculations until obtaining a saturated regime. Therefore, the
previous load value is not suitable. Numerical experiments showed that, in order
to obtain the periodic regime faster, we had to choose a higher f . Here for a load
of 1523.2MPa·s/m3 and for the same mean pressure, we obtained a critical heater
temperature Th =345.7K. The periodic regime was obtained for Th =351.6K.
The entire simulation took about 160 hours CPU time on an INTEL XEON.

3.2. Periodic regime. In this section, the periodic regime is discussed in
detail. All results are presented below using dimensionless values.

Fig. 2 (top) shows the time evolution of the acceleration and the velocity
at the left entrance of the simulation domain over one acoustic period. Fig. 2
(bottom) shows the temperature field over the entire active cell at selected times
during the period. Due to the presence of a gap between the heat exchangers and
the stack, the temperature gradient along the stack is only 50% of the maximum
temperature gradient ∆T/Ls. The entire acoustic period is divided into 21 equal
steps. There is an interplay between the acceleration of the flow and the longitud-
inal temperature gradient, resulting in an instability of the Rayleigh–Taylor type,
similar to the situation, where a heavy, cold fluid is situated above a hotter, lighter
fluid in a gravitational field, resulting in fingering. Between the entrance and the
exit, densities differ because of the longitudinal temperature gradient imposed
through the heat exchangers. If the hot light fluid is pushing the cool heavy flow,
the instability occurs. Conversely, when the acceleration switches its direction,
the flow restabilizes. Here, the flow acceleration is due to acoustics in the resonat-
ors. However, the situation is more complex; changes in cross-section also induce
acceleration/deceleration, but even that effect is made more complex because of
the significant role of vortices, as the results below show.

The evolution during the acoustic period of acceleration and the velocity at
the entrance and exit of the simulation domain are shown in Fig. 3. The values at
the entrance and exit, while differing in principle, are almost equal in the current
case.

Fig. 4 shows the instantaneous temperature field and the streamlines (left
column) and the corresponding vorticity field (right column) between the stack
and the heater at four different times (8, 12, 14, 16) within the acoustic period.
As expected, one can observe that vortices are generated between the heater and
the stack, where sudden changes of the cross-section occur. Likewise, vortices can
be also observed at the inlet and outlet of the heat exchangers and between the
stack and the cooler (not shown in Fig. 4). All vortices are symmetrical in the
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Fig. 3. Acceleration and velocity at the entrance and exit of the simulation domain,
evolution over the acoustic period, times 1 to 21.

active cell. From time 8 to time 12, the vortices accumulate and roll into the gap
between the heater and the stack as long as the flow velocity is significant. Time
8 corresponds to the beginning of flow reversal, as the two vortices grow and move
out of the gap. At time 12, the vortices move toward the center of the channel.
From time 12 to time 14, the vortices are sucked outside of the gap area and move
toward the right, and recirculation vortices become visible in the boundary layer.
This continues between time 14 and 16, and finally the plate spacing between two
plates of the stack can be divided into two boundary layer regions and the domain
outside it. The boundary layer regions absorb the two vortices close to the stack
plates, and the vortices disappear gradually.

These features can actually be observed on both sides of the stack; both sides
are qualitatively very similar, but at different temperature levels.

4. Conclusions. Direct simulation was performed of a complete thermoacous-
tic engine for which experimental data are available [7]. A multiple scale formula-
tion allows for the global compressible flow problem to be reduced to a dynamically
incompressible problem in the heat exchangers, with boundary conditions obtained
from linear acoustics in the resonator. In order to obtain the saturation faster, a
high load value was used, leading to the lower onset temperature.

Results in the transient regime, corresponding to early amplification, show
that the initial growth rate is strongly dependent on the load applied to the sys-
tem. For the stationary regime, from the simulation, visualization data of the
flow near both heat exchanger ends were extracted. The resulting figures exhibit
two main features: instability and vortex dynamics. Since due to the temperature
difference between the hot and cold heat exchangers, a longitudinal temperature
gradient exists, and since both the oscillating flow and the cross-section changes
result in periodic acceleration of the oscillating flow, one should expect that during
part of the cycle the combined effect of these two features will result in a destabil-
izing/restabilizing mechanism of the Rayleigh–Taylor type. Indeed, the results
above evidence of a strong instability, present only during part of the cycle.

Likewise, the vortex dynamics associated with cavities, corners and step-like
cross-section changes under oscillating flow show interesting features that are ob-
served in the results, interplaying with temperature gradients and accelerations.
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Fig. 4. Temperature and streamlines (left) and vorticity fields (right) between the hot
heat exchanger and the stack at four different times (8, 12, 14, 16 from top to bottom,
using scales shown on top).

While the current results are mostly qualitative, they potentially will have a
significant impact on heat transfer and losses, not only in thermoacoustic devices as
the one that was simulated, but more generally, in alternating flow devices subject
to pressure fluctuations, temperature gradients and oscillating accelerations. Thus,
the results are also relevant to Stirling engines and pulse-tube cryocoolers, where
it would also be good practice to avoid as much as possible abrupt changes of
cross-section, where the boundary layer detaches and sheds vortices.
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