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This work addresses the wall-particle interactions between a solid and insulating particle
immersed above a plane wall in a conducting liquid when subject to ambient uniform
electric and magnetic fields. Both for a perfectly conducting or for an insulating wall,
attention is paid to the net electromagnetic force and torque exerted on the particle when
it is held fixed and also to the particle rigid-body migration when it is freely suspended in
the liquid. A new boundary approach is proposed to obtain those quantities whatever the
particle shape and location. The advocated procedure actually reduces the task to the
determination of a few surface quantities by inverting seven boundary-integral equations
on the particle boundary. The entire procedure is then asymptotically worked out in the
case of a perfectly conducting wall for a distant particle, i.e. when the wall–particle gap
is much larger than the particle length scale. The derived asmptotic results reveal that
the magnitude of the wall–particle interactions deeply depends on the distant particle
geometry. In that sense, the results previously obtained by other authors for a distant
sphere interacting with an insulating plane wall are far from being general.

Introduction. As known both theoretically [1] and experimentally [2], an
insulating solid particle freely suspended in a Newtonian and conducting liquid
with uniform viscosity µ and conductivity σ > 0 migrates when subject to uniform
ambient electric E and magnetic B fields. This particle rigid-body motion, with
a translational velocity U (here the velocity of the particle center-of-volume) and
an angular velocity Ω, deeply depends upon (σ, µ), the particle’s geometry and on
(E,B). For example [1], an insulating sphere with a radius a translates without
rotating at the velocity U = −a2σ[E ∧B]/(6µ), whereas insulating non-spherical
particles, in general, both rotate and translate [3, 4].

Of course, the migration predicted for the unbounded liquid is affected by
particle–boundary interactions when the liquid is bounded. Such interactions have
been handled in the literature using different approaches for two different plane
boundaries (see also section 1.1): the insulating wall [5,6] and the perfectly con-
ducting wall [7]. Note that [6] presents a boundary method for a conducting or
insulating arbitrary shaped particle, but the associated numerical implementation
is so involved that only the case of the fields E and B normal to the insulating wall
has been investigated. In contrast, [5] allows an arbitrary magnetic field B, but it
is confined to a spherical particle because of the employed bipolar coordinates tech-
nique. Finally, [7] asymptotically approximated the sphere rigid-body motion for
an insulating sphere distant from an insulating plane wall when freely-suspended
and also the electromagnetic force Fe and the torque Ce (about the sphere center)
acting on the sphere when it is held fixed. For a sphere with a radius a and a
wall-center distance h such that ϵ = a/h ≪ 1, those authors found that

Fe = σa3[1 + ϵ3/8 +O(ϵ4)]B ∧E andCe = σa4|E||B|O(ϵ2) if B ∧ e3 = 0, (1)

Fe = σa3[1 + ϵ3/16 +O(ϵ4)]B ∧E andCe = 0 if B.e3 = 0. (2)

According to Eqs. (1)–(2), the electromagnetic sphere–wall interactions are
very weak (here of the order O(ϵ3) or at the most O(ϵ2) for the force or torque,
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Fig. 1. A solid insulating particle immersed in a conducting Newtonian liquid above
a perfectly conducting x3 = 0 solid plane wall Σ (Case 2).

respectively). However, because a sphere exhibits strong symmetries (isotropic
particle), such conclusions are not necessary true any more for a non-spherical
distant particle! Thus, dealing with a distant and non-spherical particle is still
a challenging issue. Therefore, this work, for the two types of walls, presents a
new boundary formulation (valid whatever the insulating particle geometry and
location) more suitable for a numerical implementation than the one given in [6]
for the insulating wall. This procedure is also asymptotically worked out for a
distant but arbitrary-shaped particle in the case of a perfectly conducting wall.

1. Governing problems and flow decomposition. This section presents
the governing problems and the adopted flow decomposition.

1.1. Assumptions and governing electric and hydrodynamic problems. As
illustrated in Fig. 1, we consider a solid and insulating particle P immersed above
the solid and motionless x3 = 0 plane wall Σ in a conducting Newtonian liquid
having a uniform viscosity µ and a conductivity σ > 0. The particle has the
center of volume O′ and a smooth boundary S. Moreover, on S ∪ Σ the unit
normal directed into the liquid domain Ω is denoted by n.

We use Cartesian coordinates (O, x1, x2, x3) attached to the wall with x =
OM and xi = x.ei. While the uniform ambient electric E and magnetic B fields
dominate far from the particle, the electric field reads E′ = E−∇ϕ in the liquid
domain Ω, with ϕ being the potential disturbance. At the insulating particle
boundary one requires E′.n = 0 and two different types of wall are considered:

(i) Case 1: the insulating wall with E′ parallel to Σ;
(ii) Case 2: the perfectly conducting wall with E and E′ normal to thewall Σ.

Accordingly, the function ϕ satisfies the well-posed problem

∇2ϕ = 0 in Ω, ∇ϕ → 0 as r = |x| → ∞, (3)

∇ϕ.n = E.n on S, ∇ϕ.e3 = 0 on Σ in Case 1, ϕ = 0on Σ in Case 2. (4)

The Lorentz body force drives both a liquid flow with a pressureQ and velocity
u and a particle rigid-body motion with an unknown translational velocity U
(here the particle center-of-volume O′ velocity) and angular velocity Ω. Denoting
by V > 0 the typical magnitude of u and by a the particle length scale, we
assume (as in [1-7]) vanishing Reynolds number Re = ρV a/µ and Hartmann and
magnetic Reynolds numbers. Consequently, the magnetic field B is not disturbed
and (u, Q) is a quasi-steady Stokes flow driven by the non-uniform Lorentz body
force f = σ(E−∇ϕ) ∧B. Setting Q = P + σ(E ∧B).x, the flow (u, P ) obeys the
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creeping flow problem

∇.u = 0 and µ∇2u = ∇P + σ∇ϕ ∧B in Ω, (5)

u = U+Ω ∧O′M on S, u = 0 on Σ, (u, P ) → (0, 0) as |x| → ∞. (6)

For a freely-suspended particle with negligible inertia, the force F and the
torque C (about O′) exerted by the flow (u, Q) on the particle with the volume
VP vanish. If (u, P ) has a stress tensor σ, one then gets, setting x′ = O′M,

F :=

ˆ
S

σ.ndS − σVP(E ∧B) = 0, C :=

ˆ
S

x′ ∧ σ.ndS = 0. (7)

In summary, one has first to solve Eqs. (3)–(4) to obtain ϕ and then solve
Eqs. (5)–(7) to obtain (u, P ) and (U,Ω).

1.2. Flow decomposition and auxiliary Stokes flows. When solving Eqs. (5)–
(7), it is fruitful to exploit the following decompositions u = uh + w + v and
P = ph + p with the governing problems

∇.uh = 0 and µ∇2uh = ∇ph in Ω, (8)

uh = U+Ω ∧ x′ on S, uh = 0 on Σ, (uh, ph) → (0, 0) as |x| → ∞, (9)

∇.w = 0 and µ∇2w = σ∇ϕ ∧B in Ω,w → 0 as |x| → ∞, (10)

∇.v = 0 and µ∇2v = ∇p in Ω, (11)

v = −w on S, v = −w on Σ, (v, p) → (0, 0) as |x| → ∞. (12)

Clearly, the flow (uh, ph) is the one produced by the particle when moving in
an insulating (σ = 0) liquid. By linearity, it thus exerts on the particle a force Fh

and a torque Ch (about O′) reading

Fh = −µ{K.U+V.Ω}, Ch = −µ{D.U+W.Ω} (13)

with K,W,V and D being the usual so-called second-rank resistance tensors. The
Cartesian components of those tensors are obtained by considering six auxiliary

Stokes flows (u
(i)
L , p

(i)
L ) with i = 1, 2, 3 and L = t or L = r for the particle

translation or rotation, respectively. Such flows obey Eqs. (8)–(9) except for the

boundary condition on S, which is replaced by u
(i)
t = ei or u

(i)
r = ei ∧ x′ (using

t and r for particle translation or rotation, respectively). Inspecting the relations

(13) and denoting by f
(i)
L the surface traction exerted on S by the flow (u

(i)
L , p

(i)
L ),

one finally arrives at the desired Cartesian components

Kij = −
[ˆ

S

ei.f
(j)
t dS

]
/µ, Wij = −

[ˆ
S

(ei ∧ x′).f (j)r dS

]
/µ, (14)

Dij = −
[ˆ

S

(ei ∧ x′).f
(j)
t dS

]
/µ, Vij = −

[ˆ
S

ei.f
(j)
r dS

]
/µ. (15)

From Eq. (10), the flow w, with zero pressure and stress tensor σw, is driven
by the non-uniform body force σB ∧ ∇ϕ. 1 This flow exerts on the particle the
following force and torque

Fw =

ˆ
S

σw.ndS, Cw =

ˆ
S

x′ ∧ σw.ndS. (16)

1Note that w is not unique because it is free from boundary conditions on S ∪Σ. In contrast,
the flow (w + v, p) is unique.
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The flow (v, p) is free from body force. It has a stress tensor σv and exerts
on the particle a force Fv and a torque Cv. These vectors are here expressed by
applying the reciprocal identity [8] to two Stokes flows free from body force: the
flow (v, p) and successively each auxiliary Stokes flow. One then easily arrives at
(with summations over i=1,2,3 in Eqs. (17)–(18))

Fv =

ˆ
S

σv.ndS = −
[ˆ

S

w.f
(i)
t dS +

ˆ
Σ

w.σ
(i)
t .e3dS

]
ei, (17)

Cv =

ˆ
S

x′ ∧ σv.ndS = −
[ˆ

S

w.f (i)r dS +

ˆ
Σ

w.σ(i)
r .e3dS

]
ei. (18)

Clearly, the electromagnetic force Fe and the torque Ce experienced by the
particle when held fixed (see also the introduction) obey

Fe = Fw + Fv − σVP(E ∧B), Ce = Cw +Cv. (19)

1.3. Key linear system for the particle rigid-body motion and needed surface
quantities. Recalling the definitions (7) of F and C and relations (13) and (19),
one has F = Fe+Fh and C = Ce+Ch. Accordingly, the freely suspended particle
rigid-body motion (U,Ω) fulfills the linear system

K.U+V.Ω = {Fw +Fv −σVP(E∧B)}/µ, D.U+W.Ω = {Cw +Cv}/µ. (20)

As shown in [6], the system (20) is well-posed, i.e. admits a unique solution
(U,Ω). In view of Eqs. (14)–(20), one can thus gain the quantities Fe,Ce and
(U,Ω) by solely determining the velocity w and the surface tractions σw.n and

σ
(i)
L .n at the entire boundary S ∪ Σ.

2. Advocated boundary approach and boundary-integral equations.
This section reduces our problem to the determination of seven surface quantities
at the particle boundary S only (i.e. not any more on the unbounded surface
S ∪ Σ!).

2.1. Solution for ϕ and for the velocity field w. A surface charge density
q arises on the insulating particle when the ambient uniform electric field E is
imposed. One actually has the usual integral representation

ϕ(x) =
1

4π

ˆ
S

q(y)

{
1

|x− y|
− (−1)l

|x− ys|

}
dS(y) for x in Ω (Case l = 1, 2) (21)

where ys designates the symmetry of the point y with respect to the x3 = 0 plane
wall Σ. Using Eq. (21), one analytical solution to Eq. (10) is

w(x)=

(
σB

8πµ

)
∧
[ˆ

S

q(y)

{
(−1)l

x−ys

|x−ys|
− x−y

|x−y|

}
dS(y)

]
,x in Ω ∪ S ∪ Σ. (22)

The resulting surface traction fw = σw.n on the particle surface S then reads

fw(x) = − σ

8π

ˆ
S

q(y)

[
(x− y).n(x)(x− y) ∧B+ n(x).[(x− y) ∧B](x− y)

|x− y|3

−(−1)l
(x− ys).n(x)(x− ys) ∧B+ n(x).[(x− ys) ∧B](x− ys)

|x− ys|3

]
dS(y). (23)
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From Eqs. (17)–(18) one also needs to evaluate w for x on Σ. Since |x−ys| =
|x− y| for x3 = 0, using the representation (22) gives

w(x) =
σ

4πµ

{[ˆ
S

q(y)

|x− y|
dS(y)

]
x−

[ˆ
S

q(y)y.e1
|x− y|

dS(y)

]
e1

−
[ˆ

S

q(y)y.e2
|x− y|

dS(y)

]
e2

}
∧B for x on Σ (Case 1), (24)

w(x) = − σ

4πµ

[ˆ
S

q(y)y.e3
|x− y|

dS(y)

]
(e3 ∧B) for x on Σ (Case 2). (25)

2.2. Key integral representations. Henceforth, we adopt the usual tensor
summation convention with, for instance, u = ujej . As explained in [9], for each
auxiliary Stokes flow one has the key integral velocity representation[

u
(i)
L .ej

]
(x) = − 1

8πµ

ˆ
S

Gjk(x,y)
[
f
(i)
L .ek

]
(y)dS(y) for x in Ω ∪ S ∪ Σ , (26)

where Gjk(x,y)ej/(8πµ) is the Stokes velocity produced at the point x by a unit
force with strength ek placed at the point y, which vanishes on the wall Σ. For a
distant wall (unbounded liquid), Gjk(x,y) = Sjk(x−y) with Sjk(X) = δjk/|X|+
(X.ej)(X.ek)/|X|3. In the presence of the wall, one obtains [10]

Gjk(x,y) = Sjk(x− y)− Sjk(x− ys)−
2cj(y.e3)

|x− ys|3

{
δk3(ys − x).ej

−δj3(ys − x).ek + (x.e3)

[
δjk − 3[(ys − x).ej ][(ys − x).ek]

|ys − x|2

]}
(27)

where δjk denotes the Kronecker delta, ys is the symmetry of y with respect to
Σ, and c1 = c2 = 1, c3 = −1.

By virtue of Eqs. (17)–(18), it is also necessary to get the traction σ
(i)
L .n on

the x3 = 0 wall Σ. This is achieved by using the single-layer representation (26)
and employing the stress tensor associated with the fundamental Stokes velocity
field Gjk(x,y)ej/(8πµ) and given in [9,10]. One then arrives at[

σ
(i)
L .n

]
(x) =

1

8π

ˆ
S

Tjk3(x,y)
[
f
(i)
L .ek

]
(y)dS(y) for x on Σ (28)

with x3 = 0, the identity n = e3 and then the relation (to be substituted in
Eq. (28))

Tjk3(x,y) =
6(y.e3)

|y − x|5
{
(y − x).ej(y − x).ek + (ys − x).ej(ys − x).ek

+2ck(y.e3)[δj3(ys − x).ek − δk3(ys − x).ej ]
}
. (29)

2.3. Relevant boundary-integral equations on the particle surface. The
surface charge density q is obtained by enforcing the boundary condition (4) on
the particle surface. This provides the following well-posed Fredholm boundary-
integral equation of the second kind

q(x)

2
+

1

4π

ˆ
S

{
x− y

|x− y|3
− (−1)l

x− ys

|x− ys|3

}
.n(x)q(y)dS(y)

=− [E.n](x) for x on S in Case l = 1, 2.

(30)
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In addition, because the integral representation (26) holds on the surface S,

one obtains each traction f
(i)
L from the Fredholm boundary-integral equation of

the first kind

− 1

8πµ

ˆ
S

Gjk(x,y)
[
f
(i)
L .ek

]
(y)dS(y) =

[
u
(i)
L .ej

]
(x) for x on S. (31)

Summing up, the proposed new boundary formulation consists in inverting
seven boundary-integral equations (30)–(31) on the particle surface to gain there

q and f
(i)
L . The knowledge of those surface quantities is sufficient to determine the

electromagnetic force Fe = Fw+Fv−σVP(E∧B) and the torque Ce = Cw+Cv

by invoking Eqs. (16)–(18), (23)–(25) and (28)–(29) and subsequently the rigid-
body motion (U,Ω) by using Eqs. (14)–(15) and (20).

3. Asymptotic analysis for a distant particle. As outlined in the in-
troduction, the asymptotic results (1)–(2) for a distant insulating sphere (in Case
1) might be quite different for a non-spherical particle or for an arbitrary-shaped
particle in Case 2. Such a basic issue is investigated in this section by asymptot-
ically working out the previously proposed boundary approach for the perfectly
conducting wall (Case 2).

3.1. First-order estimates for Fh and Ch. The particle has the length scale
a and the center-of-volume O′ with OO′ = he3 and h > 0. Henceforth, it is
sufficiently distant from the wall Σ in the sense that ϵ = a/h ≪ 1. As shown in
[11], for both x and y located on the distant surface S one then gets

Gjk(x,y) = Sjk(x− y) + ϵG1
jk +O(ϵ2)with G1

jk = −3δjk[1 + δj3]/(4a). (32)

By linearity, the traction f0 arising on the particle surface when it translates
at the velocity U in the absence of wall reads f0 = µT0.U, with T0 being a
second-rank tensor solely depending upon the particle geometry. Noting that the
second-rank tensor G1 = G1

jkej ⊗ek is uniform and substituting Eq. (32) into the
boundary-integral equation (31) then easily shows that

f
(i)
L = f

(i),0
L + ϵf

(i),1
L +O(ϵ2), (33)

with f
(i),0
L being the surface traction prevailing in the absence of wall, and

f
(i),1
L = T0.

(
G1.F

(i),0
L

)
/(8π), F

(i),0
L =

ˆ
S

f
(i),0
L dS. (34)

From the approximation (33) it immediately follows that the particle second-
rank resistance tensors admit the estimates

K ∼ K0 + ϵK1, V ∼ V0 + ϵV1, D ∼ D0 + ϵD1, W ∼ W0 + ϵW1, (35)

with the Cartesian components of Km,Vm,Dm and Wm for m = 0.1 obtained by

replacing in Eqs. (14)–(15) the vector f
(i)
L with f

(i),m
L . Combining Eq. (13) with

Eq. (35) then gives the first-order approximations of the hydrodynamic force Fh

and Ch for a given particle migration (U,Ω).
3.2. Estimates for q,Fw and Cw. The boundary-integral equation (30) for

q is now asymptotically inverted by using the approximation (x−ys)/|x−ys|3 ∼
ϵ2a2e3/4. One then immediately gets

q = q0 +O(ϵ3) with
´
S
q0(y)dS(y) = 0, (36)

594



Motion of an insulating solid particle near a plane boundary under the action of . . .

where the charge density q0 prevails when the liquid domain is unbounded. This
density is thus solution to the Fredholm boundary-integral equation

q0(x)

2
+

1

4π

ˆ
S

[
x− y

|x− y|3

]
.n(x)q0(y)dS(y) = −[E.n](x) for x on S. (37)

From Eq. (23) it easily turns out that σw.n = σw0
.n+O(ϵ2) on S with

[σw0
.n](x) = − σ

8π
×

ˆ
S

q0(y)

[
(x− y).n(x)(x− y) ∧B+ n(x).[(x− y) ∧B](x− y)

|x− y|3

]
dS(y). (38)

Accordingly, Fw = Fw0 +O(ϵ2) and Cw = Cw0 +O(ϵ2) with the definitions

Fw0 =

ˆ
S

σw0 .ndS, Cw0 =

ˆ
S

x′ ∧ σw0 .ndS. (39)

3.3. First-order estimates for Fv and Cv. The results derived in sections
3.1 and 3.2 hold whatever the wall nature (insulating in Case 1 or perfectly con-
ducting in Case 2). For conciseness, we, however, now restrict our attention to
Case 2 of the perfectly conducting wall (as shown in Fig. 1).

From Eqs. (17)–(18) and our approximation (33), the asymptotic estimates of
Fv and Cv are obtained by expanding the velocity w on S ∪ Σ and the tractions

σ
(i)
L .e3 on Σ. Appealing to Eq. (22) first shows that on the particle surface S

w ∼ w0 + ϵw1,w0(x) =

(
σ

8πµ

)[ˆ
S

q0(y)
x− y

|x− y|
dS(y)

]
∧B, (40)

w1 =

(
σ

16πµa

)
[P0 − (P0.e3)e3] ∧B and P0 =

ˆ
S

q0(y)y
′dS(y), (41)

where it is recalled that y′ = y −OO′. Note that w1 is constant.

To approximate w(x) for x on Σ, this time we use Eq. (25) which shows that
w = 0 if B ∧ e3 = 0 and also that, in general,

w(x) ∼ − σ

4πµ

[
(P0.e3)

|x′|
− h2(P0.e3)

|x′3|
+

P0.x

|x′3|

]
(e3 ∧B) for x on Σ. (42)

When deriving Eq. (42), we actually noted that with x− y = x′ − y′ and for
y located on the distant surface S the property |y′| = O(a) ≪ h ≤ |x′|, and for x
on Σ the identities x3 = 0 and x′.e3 = −h.

The leading approximation of [σ
(i)
L .n](x) for x on Σ is derived from Eqs. (28)–

(29) by replacing f
(i)
L with f

(i),0
L and setting y = −ys = OO′ = he3. Recalling

that x3 = 0 for x on Σ, Eq. (29) then becomes

Tjk3(x,y) ∼
12h

|x′5|

{
xjxk + δj3δk3h

2 + hck(δk3xj − δj3xk)

}
, (43)

with x′ = x1e1+x2e2−he3 for x on Σ. From Eq. (43) one gets on Σ the estimate[
σ

(i)
L .n

]
(x)∼ 3h

2π|x′5|

{(
F

(i),0
L .x

)
x−hF

(i),0
L .e3+h

[
hF

(i),0
L .e3−F

(i),0
L .x

]
e3

}
(44)

595



A. Sellier

with F
(i),0
L already defined in Eq. (34). When integrating w.σ

(i)
L .n over Σ in

Eqs. (17)–(18), we use Eqs. (42) and (44). For symmetry reasons, some contribu-
tions vanish. Retaining the non-zero terms finally yields the key approximation

ˆ
Σ

w.σ
(i)
L .ndS ∼ − 3σh

8π2µ
(e3 ∧B).

ˆ
Σ

[
(R.x)x

|x′6|
− h2 (A.x)x

|x′8|

]
dS, (45)

A =
(
F

(i),0
L .e3

)
P0 + (P0.e3)F

(i),0
L , R = (P0.e3)F

(i),0
L . (46)

The integral over the wall Σ in Eq. (45) is explicitly calculated using the
relation |x′|2 = x2

1+x2
2+h2 and the change of the variables x1/h = t cos θ, x2/h =

t sin θ with θ in [0.2π] and t ≥ 0. Because ϵ = a/h, one then gets

ˆ
Σ

w.σ
(i)
L .ndS ∼ ϵL

[
F

(i),0
L

]
.(e3 ∧B), L [f ] =

σ

16πµa

[
(f .e3)

2
P0 − (P0.e3)f

]
.

(47)
Substituting Eqs. (40) and (47) into Eqs. (17)–(18) yields the following desired

first-order behaviours

Fv = F(0)
v + ϵF(1)

v +O(ϵ2), Cv = C(0)
v + ϵC(1)

v +O(ϵ2), (48)

with, as values prevailing in the absence of wall (unbounded liquid),

F(0)
v = −

[ˆ
S

w0.f
(i),0
t dS

]
ei, C

(0)
v = −

[ˆ
S

w0.f
(i),0
r dS

]
ei (49)

and also the formulae

F(1)
v = −

{ˆ
S

w0.f
(i),1
t dS +w1.F

(i),0
t + L

[
F

(i),0
t

]
.(e3 ∧B)

}
ei, (50)

C(1)
v = −

{ˆ
S

w0.f
(i),1
r dS +w1.F

(i),0
r + L

[
F(i),0

r

]
.(e3 ∧B)

}
ei. (51)

Let us denote by F
(0)
e and C

(0)
e the electromagnetic force and the torque

experienced by a particle held fixed in an unbounded liquid. Those vectors satisfy

F(0)
e = Fw0

+ F(0)
v − σVP(E ∧B), C(0)

e = Cw0
+C(0)

v . (52)

In view of Eq. (48), the electromagnetic force and the torque exerted on a
distant and fixed particle admit the expansions

Fe= Fv + Fw = F(0)
e + ϵF(1)

v +O(ϵ2), (53)

Ce= Cv +Cw = C(0)
e + ϵC(1)

v +O(ϵ2). (54)

3.4. First-order approximation of the particle migration. Now substituting
the results (35) and (53)–(54) into Eq. (20) provides for a freely suspended distant
particle rigid-body motion (U,Ω) the following estimates

U = U(0) + ϵU(1) +O(ϵ2), Ω = Ω(0) + ϵΩ(1) +O(ϵ2) (55)

with migrations (U(0),Ω(0)) and (U(1),Ω(1)) governed by the linear systems

K0.U
(0) +V0.Ω

(0) = F(0)
e /µ, D0.U

(0) +W0.Ω
(0) = C(0)

e /µ, (56)

K0.U
(1) +V0.Ω

(1) = −[K1.U
(0) +V1.Ω

(0)] + F(1)
v /µ, (57)

D0.U
(1) +W0.Ω

(1) = −[D1.U
(0) +W1.Ω

(0)] +C(1)
v /µ. (58)
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Table 1. Properties of the vectors F
(1)
v and U(1) for orthotropic particles weakly in-

teracting with a perfectly conducting plane wall normal to both e3 and to the ambient
uniform electric field E. In the last line of the table, c and d are the real coefficients solely
depending upon the axisymmetric and ‘non-inclined’ orthotropic particle, the acronym
AO in the second line means “arbitrary orientation”.

Orthotropic particle nature F
(1)
v U(1)

inclined AO AO
non-inclined with B ∧E = 0 0 0

non-inclined with B.E = 0 F
(1)
v .e3 = 0 U(1).e3 = 0

with axis of revolution parallel to e3 cσ(E ∧B) dσ(E ∧B)/µ

3.5. Discussion. The key vectors F
(1)
v and C

(1)
v characterize the O(ϵ) wall–

particle electromagnetic interactions and deeply depend upon both the magnetic
field B orientation and the distant particle shape. Those basic features are illus-
trated in this section by considering different types of particles exhibiting some
symmetries.

(i) If the axis (O′, e3) belongs to one plane of symmetry of the particle, then
w1 = P0 ∧e3 = 0 because E is parallel to e3 (Case 2). If, in addition, B∧e3 = 0,
many simplifications occur in Eqs. (50)–(51).

(ii) If the particle is orthotropic, i.e. admits three orthogonal planes of sym-
metry intersecting at O′ and normal to the unit vectors e′1, e

′
2, e

′
3 (with e′j .e

′
k =

δjk), some conclusions are easily drawn 2. First, for such a particle both second-

order tensors V0 and D0 vanish. Accordingly, F
(i),0
r = 0 and, therefore, f

(i),1
r = 0

and all the tensors D1,V1 and W1 vanish. From Eq. (51) one gets C1
v = 0,

whereas we know (see [3]) that for an orthotropic particle C0
e = Ω0 = 0. It easily

follows that, whatever the orientation of B,

Ce = O(ϵ2), Ω = O(ϵ2), U(1) = {K0}−1.[F(1)
v /µ−K1.U

(0)]. (59)

Note that in general the velocity U(1) is non-zero (see example (iii) below).
(iii) When the orthotropic particle has one plane of symmetry parallel to

the plane wall Σ, it is termed ‘non-inclined’. Since E is aligned with e3, one
immediately gets, using the definition (41), the relations P0 ∧ e3 = w1 = 0.
Accordingly, Eq. (50) reduces to

F(1)
v = −

{ˆ
S

w0.f
(i),1
t dS + L[F

(i),0
t ].(e3 ∧B)

}
ei. (60)

Using Eq. (60) and symmetries makes it possible to obtain additional proper-

ties for the vectors F
(1)
v and U(1). Those properties are listed in Table 1, in which

the last reported case is the ’non-inclined’ axisymmetric orthotropic particle with
the axis of revolution normal to the wall Σ.

(iv) If the particle is spherical (with the radius a and center O′), the properties
(i)–(iii) hold, and one can easily obtain the following analytical results (recall the
introduction of the present paper, where U(0) is given)

w0 =
σ

10
{2a2E ∧B− (E.x′)x′ ∧B},U(0) = −σa2

6µ
[E ∧B], (61)

P0 = −2πa3E, f
(i),0
t = −3µ

2a
ei, f

(i),1
t =

9

16
(1 + δi3)f

(i),0
t (62)

2Such conclusions will hold whatever the orthotropic particle, which may admit no plane of
symmetry normal to e3 (the case of the inclined particle.)
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without summation over indices i in Eq. (62). After elementary manipulations one
then ends up with

F(1)
v =

15σπa3

16
(E ∧B), U(1) = −3

2
U(0). (63)

The above results then show that F
(1)
v = U(1) = 0 when both B and E

are normal to the perfectly conducting x3 = 0 wall, while F
(1)
v is non-zero and

U(1) = −3U(0)/2 as soon as B∧ e3 ̸= 0. In these latter circumstances, the sphere
is found to experience O(ϵ) interactions with the distant perfectly conducting wall
(in contrast to the conclusions drawn in [7] for the case of a plane insulating wall).

4. Conclusions. A new boundary approach has been proposed to determine
the electromagnetic force and torque exerted on a non-conducting arbitray-shaped
particle held fixed above a perfectly conducting or insulating plane wall and the
incurred particle rigid-body motion when freely-suspended. The procedure reduces
to the treatment of seven boundary integral equations on the particle surface for
the occurring polarization surface charge density and to the surface traction arising
for specific auxiliary Stokes flows.

The method has been asymptocally worked out for a distant particle in the
case of a perfectly conducting wall. It has been then shown that in general the wall–
particle electromagnetic interactions might be of larger magnitude than the ones
predicted in [7] for an insulating sphere interacting with a distant and insulating
wall. For conciseness, the case of a distant non-spherical particle interacting with
an insulating plane wall (i.e. the extension of the analysis developed in [7]) has
been postponed to a future study. Finally, one should note that such asymptotic
results will be further employed to benchmark a numerical implementation of the
advocated boundary treatment to be used for a particle located close to the wall.
Such a key issue requires additional efforts and will be handled in another work.
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