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We study the effects of electrically conducting walls on the interaction between a perman-
ent magnet and a liquid-metal flow in a cylindrical pipe using experiments and numerical
simulation. The problem is motivated by Lorentz force velocimetry, where the drag force
on the magnet due to the induced eddy currents in the flow is used for flow measure-
ment. Compared with insulating walls, the conducting walls lead to an increased drag
force on the magnet. Except for low distances, the experimental results are satisfactor-
ily reproduced in simulations using two different approximations of the magnetic field
distribution.

Introduction. In recent years, several flow measurement methods based on
electromagnetic induction have been developed. They can be applied for meas-
urements in conducting liquids, which are typically hot and chemically aggress-
ive. The main advantage of these methods is that they are contactless. In the
present work, we are concerned with Lorentz force velocimetry (LFV) [1]. In this
method, a magnet placed next to a moving conducting fluid causes induction of
eddy currents, which give rise to a braking Lorentz force on the flow. An equal
but opposite force acts on the magnet, which can be measured. The force depends
on the conductivity and on the distribution of velocity and magnetic fields in the
flow domain.

Typically, a permanent magnet system is used in LFV since the force meas-
urement is the simplest in this case. When LFV is applied in high-temperature
metallurgical processes, such a permanent magnet system requires thermal shield-
ing. Another difficulty is due to the conductivity of the liquid, which is typically
not very accurately known. Moreover, the force measurement itself is challenging
because the forces are typically much smaller than the weight of the magnet sys-
tem. Vibrations and other disturbances from the environment are, therefore, to be
minimized. The temporal resolution of such a system is also limited by the mass
of the magnet system.

The Lorentz force on the magnet system represents a weighted integral of
the velocity distribution. The weight function depends on the distribution of the
magnetic field and conductivity. LFV can, therefore, be used for global flow rate
measurements when the magnetic field pervades the whole cross-section of a pipe
or a duct. It can also be used for local velocity measurement when the magnetic
field is suitably localized. Several studies of LFV have, therefore, examined the
influence of the distance between a small magnet and the liquid as well as the
effects of field distribution [2–4]. In those previous studies, eddy currents were
confined to the moving conductor. We are now interested in configurations where
eddy currents also spread to conducting walls confining a conducting liquid. When
compared with insulating walls, eddy currents are closer to the magnet, in this case,
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provided that the distance of the magnet to the liquid remains the same. This may
lead to a higher Lorentz force which could be advantageous for the application of
LFV.

To study this effect, we carried out LFV experiments with a small permanent
magnet and cylindrical pipes with insulating and electrically conducting walls. In
addition, we carried out a numerical study with the commercial FEM software
and a kinematic approach to verify that the effect could be predicted successfully.
In the following, we describe the experiments and the numerical setup. After that
we present a detailed comparison between experimental and numerical results for
different flow rates and different magnet positions relative to the pipes. Finally,
conclusions and suggestions for the future work are given.

1. Experimental installation and measurements. Our test facility de-
picted in Fig. 1 is a liquid metal loop [5] filled with the eutectic alloy GaInSn
which is liquid at room temperature. The lower part of the loop comprises a cir-
cular stainless steel tube with an inner diameter of d =27mm and a wall thickness
of 2.6mm. The upper part consists of three independent, valve-controlled, 400mm
long circular test sections made of brass, copper and PVC, respectively. All three
test sections have the same cross-section and wall thickness as the steel tube, and
only one test section is active at a given time of an experiment. Therefore, the
volumetric flow rate in the test sections can be controlled with a commercial in-
ductive flowmeter (CopaXL DN25) from ABB that is located at the steel tube
section. The flow is driven by an electromagnetic pump. The maximum flow rate
corresponds to an average velocity u =1.4m/s.

(a) (b)

Fig. 1. Experimental setup: (a) photo of the GaInSn loop. Lower section: steel
loop with an electromagnetic pump and an inductive flowmeter. Upper section: three
test sections of brass, copper, PVC, all operated independently. The force measurement
system is behind the middle test section. (b) Close-up of the copper test section with the
cubic permanent magnet of the L2F2.
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We used a local Lorentz force flowmeter (L2F2) [2] to generate and measure
the Lorentz forces generated inside the GaInSn. The L2F2 comprises a cubic
magnet of 1 cm side length that is attached to a force measurement system. The
whole flowmeter can be positioned in the range of up to 5 cm both in the vertical
(y-axis) and in the horizontal (z-axis) plane. The positioning is repeatable to
within 0.05mm. Fig. 2 shows the coordinates. Compared with Fig. 1b, this sketch
is rotated by π/2 about the pipe axis. The magnet has a magnetic flux density
of 475mT on the surface. Inside the liquid metal, the maximum flux density is
300mT (magnet at y = z = 0). The measurement system determines the axial
component of the Lorentz force. It reaches a typical resolution of 0.3µN at a
sampling rate of 6.3Hz.

Before the start of a measurement, the L2F2 is positioned such that the
magnet center is at the same height as the test section at its greatest width, i.e.
at y = 0, and as close as possible to the test section without mechanical contact
between the magnet and the section wall, as depicted in Fig. 1b. The measurement
procedure is the same for all three test sections.

1.1. Measurement of F (u). The magnet is left at its original position. At
the beginning of each measurement, the force on the magnet is recorded for one
minute as a reference force. After one minute, the electromagnetic pump is turned
on to the desired speed and the force is being recorded for at least another 100 s.
The flow develops within a few seconds. The force reported here is the average of
the final 300 recorded force values (roughly 50 s).

1.2. Measurement of F (y). After the horizontal control positioning, the
magnet is put to its upmost position. There, the reference force is recorded for
about 50 s. Afterwards, the flow velocity is set to 1m/s, and the magnet is moved
downwards in steps of 0.5mm each 50 s. The total covered distance is 30mm, where
the start and end points are not symmetric about the mid-height of the test section.
The reported forces are the averages over the final 40 s of each measurement step,
as the first 10 s are omitted to ignore effects simply due to the movement of the
magnet or to the change in pump speed at the beginning of a measurement.

1.3. Measurement of F (z). After horizontal positioning, the magnet is
placed at 40mm distance from the test section, where the reference force is re-
corded. After the flow velocity is set to 1m/s, the magnet is moved towards the
test section in 40 steps of 1mm and in intervals of 50 s. Afterwards, the magnet
is moved back to z =1 cm, and the measurement is repeated with steps of 0.1mm
until the magnet reaches the wall of the test section.

2. Mathematical model. In our mathematical model, we employ two basic
assumptions about the interaction of the flow with the magnetic field. The first
one is that the induced field associated with eddy currents is small compared with
the field B due to the magnet system. This assumption allows us to use the quasi
static approximation of the induction equation. It is justified when the magnetic
Reynolds number Rm is small, which is usually the case due to the high magnetic
diffusivity. The second assumption is that the velocity field u is not affected by
the induced Lorentz forces in the liquid. We can, therefore, consider the flow
field as purely hydrodynamic. With the parameters of the experiment, it is fully
turbulent. We shall employ a simple mixing-length formula for the mean flow.
Fluctuations of the flow field will be ignored.

The geometry of the problem and the coordinate system are shown in Fig. 2,
and the material properties and specific geometry parameters are given in Table 1.
For the computations of eddy currents, we use a different coordinate system, where
the x-axis coincides with the cylinder axis. The coordinate system in Fig. 2 is
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Fig. 2. Problem geometry with the coordinate system for magnet position.

Table 1. Material and geometry parameters.

property symbol value unit

density of GaInSn ρ 6492 kg/m3

kinematic viscosity of GaInSn ν 3.4 · 10−7 m2/s
conductivity of GaInSn σ1 3.4 · 106 S/m
conductivity of copper σ2 58 · 106 S/m
conductivity of brass σ3 16 · 106 S/m
inner pipe radius R1 1.35 · 10−2 m
wall thickness R2 −R1 2.7 · 10−3 m

used to specify the location of the magnet and has already been introduced in
the previous section. Its origin is on the outer surface of the pipe, i.e. z = 0
corresponds to the magnet touching the pipe wall.

Since the conductivities of the wall and liquid are different, they require sep-
arate computational domains. In the quasi static formulation of the induction
equation, the induced currents are given by the Ohm’s law with the induced elec-
tric field represented by the negative electric potential gradient, i.e.

j1 = σ1 (−∇ϕ+ u×B) (1)

in the liquid. In the stationary conducting wall there is no electromotive force, i.e.
the currents are simply caused by the gradient of the electric potential:

j2 = −σ2∇ϕ. (2)

Due to the high conductivity, both the liquid and the walls remain electrically
neutral, and the charge conservation then reduces to ∇ · ji = 0, i.e. one has to
solve a Poisson equation

∇2ϕ = ∇ · (u×B) (3)

for the potential in the liquid, and the Laplace equation

∇2ϕ = 0 (4)

in the solid wall. Boundary conditions on the inner boundary (liquid to solid) are
imposed by charge conservation and continuity of the tangential electric field, i.e.
ϕ and the normal component jn of the electric current are continuous. When the
wall is insulating, the condition simplifies to jn = 0. On the outer boundary (wall
to air), the normal component jn = 0.

For a complete specification of the problem, the velocity and the magnetic
fields have to be given. The mean velocity is purely axial, i.e. u = (ux (r) , 0, 0) in
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Fig. 3. Velocity profile in the pipe for u =1m/s. The friction velocity is uτ =0.074m/s.

the coordinate system with the x-axis as the pipe axis. According to [6],

ux (r) =
uτ

κ
ln

(
1 + κ

uτR1

ν

1

2

(
1− r2

R2
1

))
. (5)

In this equation, uτ is the friction velocity and κ =0.42 is the von Karman
constant. uτ has to be chosen such that the desired mean velocity u is obtained
from the integration of Eq. (5) over the cross-section. A typical profile is shown
in Fig. 3.

The magnetic fields in the experimental setup are generated by a cubic per-
manent magnet with a side length L =10mm. To describe its magnetic field
distribution, we use two different approaches. The first is to approximate the
magnet by a point dipole located at the center of the permanent magnet. In this
dipole approximation, the magnetic field at the position r relative to the center of
the magnet is

B (r) =
µ0

4π

(
3
m · r
r5

r− m

r3

)
. (6)

The magnetic moment m can be calculated from the measured distribution [2]
of the magnetic field B at larger distances according to Eq. (6). The numerical
value is m =1.1 Am2.

In the second approach, the magnet is finite, i.e. a cube with uniform magnetic
moment density (magnetization) parallel to one of the edges. The field is obtained
via the magnetostatic potential, which is the solution of the Poisson equation
with the divergence of the magnetization as a source term. This divergence is
concentrated as an effective magnetic surface charge density on the two faces of
the cube, whose normal is aligned with the magnetization. If we assume the cube
to be aligned with the coordinate axes and the magnetization is along z, then the
magnetic field at x, y, z is

B =
µ0MS

4π

2∑
k=1

(−1)
k

y2ˆ

y1

x2ˆ

x1

[(x− x̃) ex + (y − ỹ) ey + (z − zk) ez][
(x− x̃)

2
+ (y − ỹ)

2
+ (z − zk)

2
]3/2 dx̃dỹ. (7)

In this equation, the points (xi, yj , zk) denote the eight corners of the cube,
and MS is the magnetization. The integration can be carried out analytically and
provides somewhat lengthy expressions of elementary functions [7]. The magnet-
ization is obtained from the magnetic moment: MS = m/L3 = 1.1 · 106 A/m.
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Fig. 4. Ratio of the components Bz of the finite magnet and dipole on the z-axis as
a function of the distance from the surface of the finite magnet. Distance is measured in
units of the side length L. The magnetization is along the z-axis.

Differences between the fields of the finite magnet and the point dipole are
expected when the distance to the magnet is small. Fig. 4 shows that these differ-
ences are significant when the distance is comparable to or smaller than the side
length of the magnet. The singular behavior of the dipole field at the origin leads
to a significant overestimation. For distances twice larger than the side length,
there is a good agreement.

The Lorentz force on the magnet is opposite to the total Lorentz force exerted
on the current distribution in the solid wall and in the liquid. We compute the
latter force,

F =

ˆ
j×B dV (8)

once the current density j due to the magnetic field B is known from the solution
of Eqs. (3, 4). We consider only the component of the force in the axial direction
of the pipe. The other components are zero.

3. Numerical solution. For the numerical solution of the Poisson equa-
tions (3), (4) for the electric potential, we used the PDE module in the commercial
finite-element software package Comsol Multiphysics. The velocity distribution
and the primary field were specified directly by Eqs. (5) and (6) or (7). After that,
the current densities in the liquid and in the walls were computed from Eqs. (1, 2)
and used to determine the Lorentz force from Eq. (8). These computations have
been also performed within Comsol. The computational domains are a full inner
cylinder for the liquid and a surrounding hollow cylinder for the solid walls. Both
have a finite length Lx. On the axial faces of the cylinders, insulating boundary
conditions are applied.

We used non-uniform structured meshes of second-order hexahedral elements
similar to those used in [8]. They provided a finer meshing close to the magnet.
An example is displayed in Fig. 5. The central part of the inner cylinder cross-
section is covered with a deformed mesh that conforms to a circular boundary of
radius R1/4. This was done to simplify the meshing close to the magnet. The
surrounding annular part has non-equidistant grid lines along the radial direction.
In the azimuthal direction, the grid lines are non-equidistant in the upper half of
the annular region. The mesh for the hollow outer cylinder has a similar layout.
In the axial direction, the grid lines also have non-uniform spacing. The magnet
is located in the mid-plane, where the density of the grid lines is high.
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(a)

(b)

Fig. 5. Typical structure of the Comsol meshes: (a) view of the cross-section, (b) top
view. The inner boundary between the liquid and the wall is apparent in (a) from the
high density of the radial grid lines.

Table 2. Parameters of different meshes. Na, Nr and Nl are the numbers of azimuthal,
radial and axial grid lines.

Na Nl Nr Number of elements Degrees of freedom

40 60 10 41340 1.7 · 105
55 75 25 159300 8.1 · 105
70 90 40 378810 1.8 · 106
85 105 55 729120 2.19 · 106
100 120 70 1239480 4.14 · 106

Different values of the length Lx were tried to ensure convergence to the
limit of infinite Lx. For the range of magnet distances considered, the computed
force did not change once Lx exceeded 5R2. Grid convergence has been tested with
different meshes listed in Table 2. The result is illustrated in Fig. 6. For the actual
computations, the mesh with the largest number of elements was consistently used.
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Fig. 6. Grid convergence for copper walls at u =1m/s and for the magnet at y = z = 0.
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Fig. 7. Experimental results at the fixed velocity u =1m/s.

4. Results and discussion. We first consider the effect of the magnet
position. As can be seen in Fig. 7, there is a fairly rapid decrease in Lorentz
force when the magnet is moved in the transverse z-direction in the experiment.
A change in tangential y-direction leads to a more gradual reduction. Fig. 7 also
shows that the conducting walls provide consistently larger forces for the same
magnet position. Compared with the insulating PVC walls, the force for brass is
typically about 10% higher. For copper, the force can be increased by about 40%.
This observation can be attributed to the effectively larger distance between the
eddy currents and the field source for insulating walls. The currents in the walls
are exposed to a higher magnetic induction because the field decreases strongly
with the distance. For this reason, it is plausible that the conducting walls amplify
the Lorentz force.

0 5 10 15 20

0.005

0.010

0.015

Experimental

Theoretical magnet

Theoretical dipole

0 5 10 15 20 25 30

0.005

0.010

0.015

Experimental

Theoretical magnet

Theoretical dipole

5 10 15 200

0.005

0.01

0.015

Experimental

Theoretical magnet

Theoretical dipole

0 5 10 15 20 25 30

0.005

0.01

0.015

Experimental

Theoretical magnet

Theoretical dipole

0 5 10 15 20

0.005

0.010

0.015

0.020

0.025

Experimental

Theoretical magnet

Theoretical dipole

0 5 10 15 20 25 30

0.005

0.010

0.015

0.020

0.025

Experimental

Theoretical magnet

Theoretical dipole

L
o
re
n
tz

fo
rc
e,

[N
]

Distance y, [mm] Distance z, [mm]

(a) Force dependence on y for PVC. (b) Force dependence on z for PVC.

(c) Force dependence on y for brass. (d) Force dependence on z for brass.

(e) Force dependence on y for copper. (f) Force dependence on z for copper.

Fig. 8. Comparison of the measured and calculated Lorentz forces at u =1m/s.
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Fig. 9. Ratio of theoretical and experimental Lorentz forces (finite magnet).

In Fig. 8 these results are compared with the numerical solutions obtained
with the dipole field and the finite magnet. The magnetization is aligned with
the z-axis. Typically, the forces are overestimated by the computations with both
field models. The disagreement between theory and experiment is significant at
small distances and decreases with y and z. Unsurprisingly, the agreement with
the experiment is generally better for the finite magnet, but this is pronounced
only at small z and y. For distances larger than the side length L of the magnet,
there is not much difference between the finite magnet and the dipole field.

The relative error between experiment and theory is further illustrated in
Fig. 9, which shows the ratio between the theoretical and experimental Lorentz
force values as a function of the distance for PVC and copper walls. The simulation
used the finite magnet model. For both displacements, the error was as large as
40% at small distances and dropped to about 2% or less at the largest distances.
For the insulating pipe, good agreement was found at smaller distances than for
the copper pipe. The result is somewhat disappointing because the field of the
finite magnet should be fairly realistic also at small distances. Nevertheless, better
agreement at larger distances may be in part due to the inaccurate representation
of the near field. Another cause of the differences could be the flow modification
by the Lorentz force in the experiment. This would likely reduce the experimental
values since the flow would tend to avoid the regions of strong field. Such a
reduction is in line with Fig. 9b. However, the apparent initial increase in error
with the distance in Fig. 9a does not fit this explanation.

The velocity dependence is shown in Fig. 10. Both the experimental and
the theoretical forces appear to satisfy a linear relation F ∼ u to a good degree.
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Fig. 10. Velocity dependence (magnet at y = z = 0, finite magnet model).
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Stronger deviations from this linear relation might have been expected since the
velocity distribution of a turbulent flow changes with the Reynolds number. How-
ever, this happens mainly near the wall. It seems to have only a small effect on
the Lorentz force as the magnetic field does not rapidly vary near the inner wall
due to the minimum distance between the pipe and the magnet. The quantitative
agreement between the simulation and the experiment is comparable with Fig. 9.

5. Conclusions. We have performed experiments and kinematic simulations
of the electromagnetic interaction between a small magnet and a liquid-metal pipe
flow with insulating and conducting walls. In the envisaged application of such
a setup for Lorentz force velocimetry, the conducting walls are beneficial because
they increase the measured force. For the Lorentz force, the agreement between
the simulations and the experiments is generally good except for small distances.
The differences may be caused by dynamic effects, i.e. the flow modification by
the Lorentz forces. This should be addressed in future dynamic simulations.
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