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We consider an idealized model of ferrofluid saturated porous medium composed of
microscale non-magnetic inclusions with simple geometry. The application of a uniform
magnetic field induces a complicated pattern of internal demagnetizing fields owing to the
difference in magnetic permeability. In turn, the imbalance of ferroparticle concentration
is created by non-uniform heating and associated colloidal thermophoresis. Numerical
simulations of magnetosolutal microconvection show significant intensification of pore-
scale mixing and appearance of solvent flux in the direction of temperature gradient.

Introduction. Ferrofluids – colloidal solutions of magnetic nanoparticles –
exhibit a pronounced Soret effect, i.e. colloidal thermophoresis. The influence of
magnetic field on the drift of colloidal particles attracts interest as a means of
control and intensification of mass transport in these media. While theory pre-
dicts that in bulk solutions the direct dependence of molecular mass transport
coefficients on the uniform magnetic field is weak [1–3], specific microconvective
phenomena, i.e. magnetic solutal microconvection, may appear [4–5] causing sig-
nificant intensification of mass transfer. Recent experimental evidence [6–7] sug-
gests that magnetic phenomena are also quite significant in porous environments or
membranes resulting in considerable attenuation of the thermophoretic separation
due to enhanced mixing. It is hypothesized that similar magnetic microconvection
may be partially responsible for this effect [8].

When a magnetic field is applied to a ferrofluid saturated porous medium,
the jump of magnetic permeability across the boundary of non-magnetic inclu-
sions may cause the appearance of significant gradients of internal magnetic field
in the vicinity of the interface. A system of such inclusions thus forms a markedly
non-uniform internal magnetic field within the porous environment. In turn, in
the conditions of non-uniform heating, the strong colloidal thermophoresis initi-
ates the formation of corresponding gradients of ferroparticle concentration. Both
the appearance of spatial non-homogeneity of the distribution of the dispersed
magnetic phase and the internal magnetic field contribute to the formation of
the associated non-potential magnetosolutal buoyant force, which may entrain the
ferrofluid and create pore-scale magnetosolutal microconvection. Apart from pore-
scale microconvective circulations [8–9], the formation of integral flow is possible
in the vicinity of the inclusions [8].

Here we report preliminary results of numerical simulations of pore-scale mag-
netosolutal microconvection in a geometrically simple model of porous media. We
create a 1D arrangement of non-magnetic microscale cylinders immersed in a fer-
rofluid (Fig. 1). Placing the cylinders periodically on a regular lattice with a
period l every other row is shifted vertically by half the period, as shown in Fig. 1.
Assuming the radius of the cylinders as the length scale, the porosity of the sys-
tem is ε = 1 − π/l2, where the period l is expressed in units of the radius of the
cylinder. A temperature gradient is applied across the structure and a uniform
external magnetic field is imposed in the same direction.
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Fig. 1. Scheme of the arrangement – non-magnetic cylindrical elements immersed
in a ferrofluid, temperature gradient and magnetic field are applied across the porous
structure.

1. Magnetic microconvection. The magnetic force density acting on the
ferrofluid due to the magnetic field is expressed by the Kelvin body force term F =
µ0(M∇)H [10], with M being the magnetization of the ferrofluid, µ0 the vacuum
permeability and H the magnetic field. Assuming M = χ(c)H, where χ(c) is the
magnetic susceptibility at a given mass concentration of magnetic nanoparticles
and magnetic field, and with the linear relationship for the magnetic susceptibility
χ(c) = χ0(1 + χc∆c), where ∆c = c − c0, c0 is a reference mass concentration,
χc = 1/c0 and χ0 is the susceptibility at reference parameters, the non-potential
part of the force density becomes

F = µ0χ0χc∆cH0∇ [(h+∆H/(2H0))∆H]

with ∆H = H − H0, H0 = H0h being a reference magnetic field, h is the unit
vector. Thus, the variation of the ferroparticle concentration and magnetic field
can produce magnetic convection in ferrocolloid.

The diffusive dynamics of colloidal nanoparticles is very slow and relevant
only on submillimetre lengthscales. In turn, the Schmidt number Sc = η(ρD)−1

(where η and ρ are the viscosity and density of ferrocolloid, D the diffusivity of
ferroparticles) expresses the ratio of momentum and mass diffusivities and is of
the order 104 − 105. The magnetosolutal microconvection then is a creeping con-
vection. Introducing characteristic scales for the length L (equal to the radius of
the cylindrical inclusion), time L2D−1, magnetic field ∆H, concentration pertur-
bation ∆c, the dynamics of ferrocolloid is described by the dimensionless Stokes
equation

−∇p+∆u+Rmc∇ [(h+ rHδH) δH] = 0 (1)

and the continuity condition ∇ · u = 0. Here rh = ∆H/(2H0) typically does not
exceed 5% and is disregarded. The magnetosolutal Rayleigh number is

Rmc = µ0χ0χcH0L
2(ηD)−1∆c∆H.

We use overbars to denote the characteristic scales of the concentration ∆c, mag-
netic field ∆H and the temperature ∆T to distinguish these definitions from the
deviations of the corresponding quantities from the reference values or the applica-
tion of the Laplacian operator. The exact values of the corresponding characteristic
scales will be given further in the text.

In a non-isothermal ferrocolloid, the linearized mass flux due to diffusion and
thermophoresis is J = uc −D∇c − c0(1 − c0)DST∇T [10], where ST is the Soret
coefficient. For now we neglect magnetophoretic contributions. Introducing the
concentration scale ∆c = c0(1 − c0)|ST|∆T yields the normalized concentration
dynamics equation

∂

∂t
c+ u∇(c− T ). (2)
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The Lewis number L = αD−1, characterizing the ratio of thermal and mass diffu-
sivities, is also very large in ferrofluids. Thus, the temperature dynamics is much
faster than that of the concentration, and the magnetosolutal microconvection
does not influence the distribution of temperature. We impose the temperature
gradient gradT and calculate ∆T = gradT · L.

A non-magnetic cylinder immersed in a ferrofluid with the magnetic perme-
ability µ = 1+χ0 and exposed to the uniform magnetic field creates around itself
a magnetic perturbation δH. In the dimensionless form (the radius of the cylinder
is assumed as a length scale L),

δH =
cos(Θ)

r2
er +

sin(Θ)

r2
eΘ, (3)

where r and Θ, er and eΘ are the cylindrical coordinates and basis vectors.
Also, the characteristic scale of the magnetic field is ∆H = |KH |H0 and KH =
(µ − 1)/(µ + 1). We calculate the magnetic perturbation produced by an array
of non-magnetic cylinders directly from the Maxwells equations, but the result
corresponds to a superposition of 2D dipoles (3).

For typical ferrofluid parameters (ST = 0.1K−1, η = 0.001Pa·s, D = 2 ×
10−11 m/s2, c0 = 0.15, the particle diameter 8 nm, the particle spontaneous mag-
netization 5 × 105 A/m), the external field 0.1T and the imposed temperature
gradient correspond to a temperature difference of 20K applied across a 1-mm
thick porous membrane; the magnetosolutal Rayleigh number in the vicinity of
cylindrical inclusion with the radius 2µm reaches Rmc = 50. This is enough
to cause a significant microconvective particle transfer, and we use this value in
simulations.

2. Results. We start from the initial concentration distribution c = −x,
which corresponds to a stationary stratification created by the temperature T = x.
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Fig. 2. Case 1 simulation (ε = 0.8, fixed concentration gradient); from top to

bottom: perturbation of the magnetic field H, plot of the averaged magnetic force ⟨F⟩β ,
streamlines of the velocity u, plot of the averaged velocity ⟨u⟩β , plot of the gradient of
averaged pressure −∇⟨p⟩β .
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We have performed two series of simulations: in the first case, we solve only the
Stokes equation and the initial concentration distribution is not allowed to change
(case 1). As expected, the calculated distribution of the magnetic field perturba-
tion H = h · δH is highly inhomogeneous (Fig. 2) and so is the magnetic force
F = Rmcc∇H. In order to reveal the macroscopic structure of the magnetic forces,
we perform spatial averaging. The correct average in periodic porous structures is
the cellular average across a unit cell [11], which we denote as ⟨. . .⟩β . The super-
script β indicates that the averaging is performed in the fluid phase – in the space
occupied by the ferrofluid, i.e. the intrinsic average is obtained. Interestingly, the
averaged magnetic force density ⟨F⟩β vanishes in the bulk of the porous structure
and remains only in the immediate vicinity of the membrane surface, reaching
a sharp maximum within approximately a single period of the porous structure
at both ends of the membrane. While the averaged magnetic force is well local-
ized, its maximum value is proportional to the value of the concentration at both
ends of the membrane. So, when a concentration gradient is applied across the
porous membrane, the total magnetic force is proportional to the thickness of the
membrane.

In the second series of calculations, we solve also the concentration equation,
advancing to the stationary/quasi-stationary state (case 2). In this case, the av-
eraged concentration gradient decreases within the porous membrane (Fig. 3) due
to the change of porosity. In turn, the distribution of the averaged magnetic force
becomes asymmetric with respect to the midpoint of the membrane. A component
of the averaged magnetic force appears within the bulk of the membrane counter-
acting the pressure difference created by the forces in the vicinity of the membrane
surface. These are the consequences of convective dispersion of the concentration
within the porous membrane. It can be expected that in 2D membranes these
effects may lead to instabilities and oscillations.

In the framework of Darcy theory, the relationship between the averaged
quantities should hold in the bulk of the porous membrane [11]

⟨u⟩β = −K

ε
∇⟨p⟩β , (4)

where K is the permeability tensor, which we calculate by solving the closure
problem numerically for a unit cell [11]. In the series of calculations when the
concentration gradient is fixed (case 1), the averaged magnetic force ⟨F⟩β vanishes
within the porous structure. That is why it is absent in Eq. (4).
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Fig. 3. Case 2 simulations (ε = 0.8, concentration can change); from top to bottom:

plot of the gradient of averaged pressure −∇⟨p⟩β , plot of the averaged magnetic force
⟨F⟩β .
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Fig. 4. Results of simulations: left: plot of −∇⟨p⟩β and εK−1⟨u⟩β for different

porosities (for case 1); middle: (a) ⟨u⟩β (case 1), (b) ⟨u⟩β calculated from Eq. (4) (case
1), (c) plot of ε−1⟨u⟩β (case 2); right: plot of −∇⟨c⟩β within the membrane (case 2).

The calculated quantities F̃ = εK−1⟨u⟩β and −∇⟨p⟩β are plotted in Fig. 4
(left) with respect to the porosity ε of the membrane. While F̃ is closely parabolic,
the dependence of the averaged pressure gradient is mostly linear. Despite the dif-
ference, the Darcy law (4) acceptably captures the relationship between the aver-
aged velocity and the pressure (Fig. 4, middle). In the second series of calculations
(case 2), due to the decrease of the concentration gradient within the membrane,
the averaged velocity decreases as compared with the unperturbed case (case 1).
The magnitude of the concentration gradient within the membrane in this situa-
tion is proportional to the porosity ε (Fig. 4, right). Plotting the quantity −∇⟨p⟩β
(Fig. 4, middle), it corresponds to the magnitude of the averaged velocity ⟨u⟩β in
the unperturbed case (case 1). This correspondence remains up to rather large
values of porosity. The little difference can be attributed to convective dispersion
within the membrane.

Starting from a certain value of porosity (ε ≈ 0.85), the dependence experi-
ences a discontinuity, and the averaged velocity begins to decrease. This happens
due to the establishing of the instability of the flow. The symmetrical configu-
ration is replaced by the asymmetrical one and, further increasing the porosity
(ε > 0.95), we observed periodic oscillations.

3. Conclusions. We have performed pore-scale numerical simulations of
ferrofluid magnetosolutal microconvection in 1D ordered porous membranes com-
posed of cylindrical elements. The imbalance of the concentration was created by
thermophoretic separation induced by a temperature gradient. The application of
the external magnetic field creates highly inhomogeneous distribution of the mag-
netic force within the membrane, which nevertheless possesses the well-defined
macroscopic structure. A pressure difference appears across the membrane driv-
ing the flow of ferrofluid in the direction of the temperature gradient. We show
that interpretation of the results of pore-scale simulations in the framework of the
Darcy theory is possible, although errors as high as 30
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