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This paper focuses on an analytical approach to study a cylindrical MHD generator that
uses a thermoacoustic engine to apply pressure oscillations of the liquid metal. The fluid
motion will induced an electric current in the liquid under the effect of a perpendicular
steady magnetic field. The current will be extracted from the MHD channel by induction
into a coil surrounding the channel. Few approximations are taken into account in the
model, which is based on the Navier–Stokes and induction equations.

Introduction. Electricity production using thermal energy as a primary
source is of major importance in industries. Thermoacoustic engines have the
potential to produce mechanical energy by velocity vibration when coupled to
magnetohydrodynamic (MHD) transducers and are able to generate electricity.
The MHD generator is based on the interaction of a DC magnetic field with an
oscillating conducting fluid flow to produce AC magnetic fields and current inside
the MHD channel. The induced AC magnetic field itself generates an AC elec-
tric current in a coil connected to the load by the law of induction [1, 2, 12, 13].
In MHD induction machines, the electric current is produced with an adjustable
strength and voltage and does not require any electrodes [3, 14]. A scheme of the
thermoacoustic MHD system is demonstrated in Fig. 1, where the MHD generator
is submitted to an oscillatory pressure forces.

Neuringer in [4] has analytically studied the MHD generator and focuses on
the extraction of optimum power from the steady one-dimensional flow of an in-
compressible inviscid fluid across a uniform transverse magnetic field in an ex-
ternally loaded channel of arbitrarily varying cross-section. This investigation
has been numerically validated by Aithal [5]. An analytical study on a solar
heat coupled MHD generator has been done by Satyamurthy [6]. In that work, a
steady-state two-fluid model was used to determine various dynamic parameters of
the MHD generator. Different experimental investigations of the MHD generator
considering the dynamic behavior and the effect of various MHD non-dimensional
parameters on the velocity and induced magnetic field of the generator are pre-
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Fig. 1. Scheme of the thermoacoustic MHD generator.
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Fig. 2. Scheme of the analytical model of the MHD generator containing a core, an
MHD channel, a ferromagnetic yoke, a magnet, an induction coil, load resistance RL and
a compensation capacitor CC.

sented in the works by Fabris [7], Dixit [8], Jousselin et al. [9] and Marty et al.
[10].

This paper presents the results of the investigation on the MHD channel
characterization with a given oscillatory pressure and velocity applied by the ther-
moacoustic engine. Due to this oscillating pressure difference, the liquid metal
oscillates along the cylindrical MHD channel. A radial magnetic field is produced
by a permanent magnet placed around the channel. The interaction between this
magnetic field and the liquid motion induces an electric current in the fluid. This
AC electric current itself induces a magnetic field interacting with the coil placed
externally to the permanent magnet, producing electricity when the load circuit
is closed.

1. Description of the model. The analytical model of the system is based
on the scheme displayed in Fig. 2. The figure scales are not realistic. The active
part of the generator with the length l is supposed to be much larger than the
MHD channel depth g, so that it could be considered as infinitely long. The MHD
channel contains a liquid metal with the density ρ, dynamic viscosity µ, relative
magnetic permeability µf and electrical conductivity σf .

The oscillatory pressure gradient applied by the thermoacoustic engine with
the amplitude ∇p/l causes a velocity field with the value u0x̂ and a pulsation ω
in the liquid metal. This velocity field is radially affected by a steady magnetic
field B = −B0r̂. The interaction will result in an induced current jϕ̂, inducing
an AC magnetic field in the ferromagnetic core of the generator. So the generated
magnetic flux induces an AC electric current in the external coil connected to the
load. Constant and induced magnetic flux lines are shown in Fig. 2.

The magnetic flux closes its path through the core and yoke with the relative
permeability µi and µe, respectively. The coil that has N turns and an internal
resistance rC is connected in series to the load circuit, including a correction ca-
pacitor Cc and a resistive load RL. The effect of the conducting wall of depth ew
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and electrical conductivity σw on the power loss of the generator is also taken into
account. The main notations used in this paper are listed in Table 1.

This investigation includes an exact solution of the time dependent induced
magnetic field and the true velocity profile of the oscillating liquid metal. Pertur-
bations in fluid velocity produce also a perturbation in induced current, especially
in the vicinity of the walls of the liquid metal channel.

2. Problem formulation. The governing equations are based on the follow-
ing two sets:
a) the Navier-Stokes equation which relates the velocity and pressure with the
Lorentz force:

dV

dt
= −1

ρ
∇(p′ + ρg0z) + ν∇2V +

1

ρ
j×B = −1

ρ
∇p+ ν.∇2V +

1

ρ
j×B; (1)

b) the induction equation which is a combination of the Maxwell equations
and the Ohm’s law:

∂B

∂t
= ∇×V ×B− 1

µ0σf
∇2B, (2)

where the total magnetic field B = B0r̂ + bx̂ is the contribution of the imposed
steady magnetic field and of the induced field, V is the liquid metal velocity, ρ
is the fluid density, p′ denotes the oscillatory pressure, ρg0z is the gravitational
pressure, ∇p is the total pressure gradient imposed by the thermoacoustic engine,
ν = µ/ρ is the kinematic viscosity, j is the current density in the liquid, µ0 stands
for the magnetic permeability of the free space.

By assuming that the main variables are of the following form
u = ℜe

{
ueiωt

}
x̂

B = B0r̂+ ℜe
{
bxe

iωt
}
x̂

p = p0 + ℜe
{
(∆p/LB)xe

iωt
}

. . .

(3)

and taking into account the hypothesis of long channel aspect (l ≫ g), which
implies d/dx ≪ 1, and the symmetry in the azimuthal direction, we have:

∂

∂ϕ
,
∂

∂x
≈ 0. (4)

The current density in the fluid could be calculated by the Ohm’s law

j = σf(E+V ×B), (5)

where E is the electric field. Assuming the velocity and the imposed field only in
one direction will result in

V ×B =

 r̂ ϕ̂ x̂
0 0 u(r)
B0 0 bx

 = B0u(r)ϕ̂. (6)

Then the induced current is

j =

 jr = σfEr

jϕ = σf (Eϕ +B0u(r))
jx = σfEx.

 (7)
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Table 1. Main notations used to characterizes the MHD generator.

Scales Explanation

rb inner radius of the MHD channel
rt outer radius of the MHD channel
g channel gap

ew wall thickness
hM magnet thickness
h inner height of the yoke

hte thickness of the yoke
LB length of the active part
le length of the yoke pole
Si cross-section of the core
Ste cross-section of the yoke
Se cross-section of the yoke leg

Table 2. Non-dimentional scales.

Characteristic scales Value

Length g
Magnetic field B0

Time 1/ω
Velocity ωg

Current density B0/µ0g
Current B0g/µ0

Electric field B0gω
Electrical resistance 1/σg

Electrical power B0
2g/µ0

2σ

Under the hypothesis d/dx=0 and d/dϕ=0, the continuity equation of the
electric current (∇ · j = 0) implies dE/dr=0. Because jr vanishes at the bottom
wall of the channel which is insulated, Er = 0 everywhere. If it is assumed to have
no applied electric field Ex along the MHD channel, the electric field and, hence,
the induced current have only an azimuthal component and the induced magnetic
field has the flow direction, as it is expected in Eqs. (3). Then

E =

 Er = 0
Eϕ = Eϕ(r)

Ex = 0

 J =

 jr = 0
jϕ = jϕ(r)
jx = 0

 b =

 0
0
bx

 (8)

2.1. Dimensionless equations. The main typical scales used to derive the
dimensionless equations are given in Table 2.

Since the depth of the channel is assumed to be several times smaller than
the radius of the channel (g ≪ rt, rb), the variations of the channel radius are
neglected in the differential equation and the mean value of the channel radius is
applied to the model:

r = rch =
rb + rt

2
. (9)

Then the non-dimensional system of differential equations is derived as fol-
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Table 3. Characteristic non-dimensional MHD constants.

Symbol Value MHD constant Explanation

Rm µfσωg
2 magnetic Reynolds number ratio of characteristic time

of magnetic field diffusion to
characteristic time of mag-
netic field convection

Reω ρωg2/µ classical Reynolds number ratio of inertia forces to vis-
cous forces

N B2
0σ/ωρ interaction parameter ratio of electromagnetic

forces to inertia forces

Ha B0g
√

σ/µ Hartmann number ratio of electromagnetic
forces to viscous forces

Kp
∇p

LBω2ρg
pressure constant dimensionless imposed

pressure

lows: 
iu∗ = −Kp +

1

Reω

∂2u∗

∂r∗2
+

1

rchReω

∂u∗

∂r∗
+

N

Rm

∂b∗

∂r∗
,

ib∗x =
1

rch
u∗ +

∂u∗

∂r∗
+

1

rchRm

∂b∗x
∂r∗

+
1

Rm

∂2b∗x
∂r∗2

.

(10)

The index <∗> indicates the non-dimensional variables. The equations ex-
hibit the non-dimensional parameters listed in Table 3 which control the flow [3,
11].

2.2. Boundary conditions. The system of differential equations (10) needs
four boundary conditions to solve the system. From the hydrodynamics point of
view, two of these conditions are defined simply by the no-slip wall constrains:

u∗(r∗ = r∗b) = 0 u∗(r∗ = r∗t ) = 0. (11)

The magnetic boundary condition includes the dimensionless induced mag-
netic flux density at the bottom b∗xb and at the top b∗xt of the MHD channel. The
induced field at the bottom of the channel in the x-direction is a summation of
the following three magnetic sources:

• b∗xf = magnetic flux density due to induced current inside the liquid

• b∗xw = magnetic flux density due to induced current inside the wall

• b∗xL = magnetic flux density due to current in the load.

The induced magnetic field due to the induced current elements inside the
liquid is such as

db∗f =
g

2πR
B∗

0j
∗(r′∗)dx′∗dr′∗db∗, (12)

db∗xf = x sin(β2)db
∗
f , (13)

and bxf is then calculated by an integration of the elements of the induced field
over the cross-section of the channel:

b∗xf =

ˆ l∗/2

−l∗/2

ˆ r∗t

r∗b

r′∗j∗(r′∗)dx′∗dr′∗

2π((r∗ − r′∗)2) + (x∗ − x′∗)2
. (14)
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Assuming the large radius compared to the depth of the MHD channel (i.e.
g∗ ≪ r∗b, r

∗
t ), the following approximation is applied:

|R∗|2 = (r∗ − r′∗)2 + (x∗ − x′∗)2 ∼= g′∗2 + r′∗2. (15)

Then bxf is calculated as

b∗xf =
1

2π

(
2 tan−1

(
LB

2g

))ˆ r∗t

r∗b

r′∗j∗(r′∗)dr′∗, (16)

where g/LB is the aspect ratio. Secondly, the magnetic field at the bottom of the
channel due to the induced current in the wall is determined. The current density
in the wall defined by the Ohm’s law in the vicinity of the top of the channel takes
into account the continuity of the electric field in the liquid and in the wall:

j∗w =

(
σw

σf

)
µfσfg

2ωE∗
t =

(
σw

σf

)
RmE∗

t

E∗
t =

1

Rm

(
σf

σw

)
j∗f (r

∗ = r∗t ) =
1

Rm

(
σf

σw

)(
∂b∗(r∗t )

∂r∗

) (17)

With the current density in the wall calculated from Eqs. (17), its magnetic
field density could be found by applying the Biot-Savart law and integrating over
the cross-section of the wall as follows:

b∗
xw =

1

π

(
eσw

gσf

)(
∂b∗(rt)

∂r∗

)
tan−1

(
L

2g

)
x̂. (18)

The factor eσw/gσf is the conductance ratio. Thirdly, using the same method
of calculation that was applied for the contribution of the wall, the magnetic flux
density due to the induced current in the load will be according to equation

b∗
xL =

(
Nc

π

)(
g

LB

)
i∗
(

LB

2(g + hM)

)
x̂, (19)

where Nc is the number of turns of the coil. Thus the current in the load depends
on the load characteristics as well as on the induced voltage due to the oscillation
of the magnetic flux in the coil electrical circuit as the source term. The load
circuit configuration, as demonstrated in Fig. 3, includes the inductor LC and its
self-resistance rC, the output load modelled with a resistor RL and a correction
capacitor Cc to adjust the maximum efficiency at the operating frequency. Consid-
ering the Lenz law in the coil (U∗ = −NCS

∗
i Rm(db∗xb/dt

∗)), the non dimensional
equation of the load circuit is

−NcS
∗
i Rm

db∗xb
dt∗

+
1

Rm
(RL + rC)i

∗ +
1

RmC∗
c

ˆ
i∗dt∗ = 0. (20)

The dimensionless form of of the solution of Eq. (20) yields

i∗ =
Cµ0NcSiω

2

g(1 + i(RL + rC)Ccω)
b∗xb = KLb

∗
xb, (21)

with KL being a non-dimension constant that includes the load circuit parameters
and relates the current in the load with the induced magnetic flux density in the
channel. The latter boundary condition is the induced magnetic flux density at
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C
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C C
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Fig. 3. Load circuit configuration.

Table 4. Non-dimensional parameters applied to the analytical calculation.

Rm Reω Kp N KL

0.051 32512 6.22 0.57 5.68×10−4 − i3.51× 10−3

the top of the MHD channel (i.e. b∗xt = b∗x(r
∗ = r∗t )). This item could be achieved

by applying the Ampere’s law once at the bottom and once at the top of the
channel, and in both cases to consider the yoke of the MHD generator as a part
of the enclosing path. We could obtain the relation between the induced magnetic
flux density at the either limits of the channel. The Ampere’s law on paths (1)
and (2) will lead to ∑

h∗l∗ =
1

µ0
I∗in, (22)

where h and l are the magnetic field intensity and the length of the path and Iin
is the current inside the path. This calculation will result in

b∗xt =
1

2

((µf

µi

)2(
2

g

LB

µi

µf
.
Si

Se
+ 1

)
+ 1

)
b∗xb. (23)

3. Analytical results and discussion. The system of differential equa-
tions (10) could be solved with the boundary conditions mentioned in Eqs. (11),
(16), (18) and (19). The non-dimensional parameters applied to the model are
presented in Table 4. In this section, the sensitivity of the solution versus different
non-dimensional parameters will be analyzed.

Fig. 4 illustrates the time evolution of the velocity profile in the channel. The
core has a constant velocity, while in the boundary layer a different behavior is
observed that is caused by the viscosity. This effect is very important because it
produces a reverse flow (see Fig. 4f). This can be explained by the diffusion time
of the viscous forces, which introduces a phase shift between the velocity in the
core and in the boundary layer of the channel.

The phenomenological explanation of this reverse flow is given below. The
typical time of the diffusion of viscosity is

Tν ≈ d2

ν
, (24)

where ν is the kinematic viscosity and d is the depth of the viscous boundary layer.
The typical time of the reverse flow oscillations in the core of the channel is

Tω ≈ 1

ω
, (25)

with ω as the frequency of the oscillations. So the distance from the wall, on which
the phase shift between the wall velocity and the core of the channel occurs, can
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Fig. 4. The velocity profile of liquid sodium inside the MHD channel for six instants
according to the parameters mentioned in Table 4. Fig. 4f demonstrates a phase shift
between the velocity amplitude in the body and in the boundary layer of the channel
while changing the velocity direction in the channel.

be estimated from the equality of the two typical times. That gives

d ≈
√

ν

ω
. (26)

Fig. 5a depicts the induced magnetic flux density profile inside the MHD chan-
nel. Since the velocity in the core of the channel has a constant value, according
to formula (5) for the induced current density inside the MHD channel, j is also
constant. Then the induced magnetic flux density derivation which is proportional
to the current density as

j∗ =
∂b∗x
∂r∗

(27)

will be also constant. This means a linear behavior of the induced field in the core
of the MHD channel that is obvious from Fig. 5. The viscosity effect is visible
via the change in b∗x slope in the boundary layer. This phenomenon could be
explained also by the induced current density profile in the channel presented in
Fig. 5b. According to Eq. (5), the current density in the core of the channel is
constant if the velocity and the electric field (E) are also constant, as demonstrated
before. But in the boundary layer, as the velocity drops to zero, the electric field
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Fig. 5. Dimensionless induced magnetic flux density (a) and induced current density
(b) profiles in the MHD channel.

(which is still constant) dominates and changes the sign of the induced current. A
consequence of this reversed induced current is that the electromagnetic forces are
directed in the flow direction; they are in the same sense as the applied pressure
forces. So they are motive forces and contribute to the power transmission when,
in the center, the electromagnetic forces act against the flow and then they are
resistive. But on the other hand, the very high electric current in the boundary
layer induces high Joule losses in such a way that the balance of the reverse flow
near the walls is negative.

The efficiency of the MHD generator is calculated as the ratio of the extracted
power from the load to the input power into the system. Since a resistive load is
used in the load circuit (Fig. 3), the output power is the Ohmic loss in resistance
that is calculated as

P ∗
out =

1

2
R∗

LI
∗2
max, (28)

where I∗max is the amplitude of the dimensionless current in the load circuit. The
input power is the summation of the output power and of all losses in the circuit.
Different power losses could be listed as below:

• P ∗
coil: dimensionless Ohmic power loss in the coil;

• P ∗
jf : dimensionless Ohmic power loss in the liquid;

• P ∗
jw: dimensionless Ohmic power loss in the conducting wall;

• P ∗
fr: dimensionless mechanical friction losses in liquid metal.

The Ohmic loss in the coil is obtained in a similar way as the output power.
The fluid Ohmic loss is obtained by a volume integral over the partial Ohmic
loss due to the induced current in liquid metal (29), while the Ohmic loss in the
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Fig. 6. Different dimensionless power levels of the system versus the operating fre-
quency.

conducting wall is calculated by a volume integral over the partial Ohmic loss due
to the induced current in the wall:

P ∗
jf = 2πr∗ch

LB

g

ˆ r∗t

r∗b

j
∗2
dr∗, (29)

P ∗
jw = 2πr∗ch

σf

σw

LB

g

ˆ r∗t

r∗b

j∗2w dr∗, (30)

where the bar denotes the average value over a period of time. Mechanical fric-
tion losses that occur due to the viscous effects inside the fluid are calculated
from Eq. (3):

P ∗
rf =

µω2g2µ2
f σf

TB2
0

ˆ
T

ˆ
V ∗
MHD

ℜe {u∗(t)} d2ℜe {u∗(t)}
dr∗2

dVMHDdt =

µω2g2µ2
f σf

2B2
0

ˆ
V ∗
MHD

(
ℜe {|u∗|} d2ℜe {|u∗|}

dr∗2
+ℑm {|u∗|} d2ℑm {|u∗|}

dr∗2

)
dVMHD,

(31)

where V ∗
MHD is the dimensionless volume of the MHD channel, ℜe and ℑm are

the real and imaginary values. Then one can derive the efficiency as

η =
Pout

Pin
=

Pout

Pcoil + Pjf + Pjw + Pfr
. (32)

Fig. 6 shows the sensitivity analysis of different power contributions of the
system versus the frequency. It could be observed that the viscous loss disappears
at higher frequencies. This occurs because the distortion in velocity profile (in-
troduced in Eq. (3) by d2u∗/dr∗2) that is caused by the viscosity will be damped
by increasing the frequency. This occurs because the depth of the near wall zone
affected by the viscosity decreases when the frequency increases (see Eq. (26)).
Then the boundary layer will be limited to a very narrow band beside the either
sides of the channel.

Moreover, since the depth of the induced AC magnetic field penetration into a
conducting media also decreases when the frequency increases, at higher frequen-
cies the Ohmic losses into the liquid and wall decrease as the load current tends
to zero. This, in turn, will reduce the total Ohmic losses and the output power
into the function of frequency. So at the high frequency the efficiency tends to
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unity, but the output power decreases. This power tends to zero at a very high
frequency.

The output power exhibits a maximum value that corresponds to an optimized
configuration of the load circuit.

4. Conclusion. This paper describes an analytical approach to study the
MHD generator which is in connection with a thermoacoustic engine that applies
the fluid oscillation to the MHD channel. The analytical model is based on a
system of differential equations, containing the Navier–Stokes equation and the
induction equation. The non-dimensionalized differential equations are explained
according to the MHD non-dimensional parameters. The solution of the system
is obtained by applying the velocity and the induced magnetic field boundary
conditions. The results of the different parameters and the sensitivity analysis of
the system are presented for a specific situation, as well as a general solution based
on the non-dimensional MHD parameters.
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