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ELECTROMAGNETIC FLOW CONTROL
INTHERIBBONGROWTHONSUBSTRATEPROCESS

P.Beckstein, V.Galindo, G.Gerbeth
Helmholtz-Zentrum Dresden – Rossendorf (HZDR),
Bautzner Landstrasse 400, 01328 Dresden, Germany

The Ribbon Growth on Substrate (RGS) technology promises a very efficient approach
for future photovoltaic (PV) silicon wafer production compared to the majority of com-
monly accepted processes. Although, for an eventual break-through of this RGS tech-
nology a number of remaining problems need to be addressed to increase the process
stability. We have, therefore, performed numerical investigations in order to study the
influence of the involved AC magnetic fields on the silicon melt flow during the RGS
process.

Introduction. Today photovoltaic silicon is mainly produced by directional
solidification of multi-crystalline silicon or by the Czochralski method of silicon
single crystal growth. Wafers are then produced by sawing the ingots. The un-
avoidable sawing losses of prevalent processes are still in the range of 40 to 50%
of the fed material. A very efficient way to avoid this deficit in terms of energy
and material is the Ribbon Growth on Substrate (RGS) technology, which was
suggested and developed during the last decades [1–5].

The basic idea of this process is a continuous feeding of molten silicon into
a casting frame without bottom, whereas a solidified silicon foil is extracted side-
wise on a sub-cooled moving substrate underneath. This brings both a close to
perfect material yield by avoiding sawing losses and a low energy consumption due
to the continuous nature of the processing. Nearly all of the silicon melt is directly
used to form the wafer itself. Another distinct advantage of the RGS process also
comes from its fully decoupled solidification and casting velocities. Fig. 1 shows
a schematic of this principle. The blueprint depicts one half of the core process
assembly, where the foreground corresponds to a central sectional plane in the
process direction. The narrow region between the bottom of the casting frame
walls and the substrate has the shape of a spacious slit.
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Fig. 1. Scheme of the RGS process without excitation coils [2]: one half with central
cut in the process direction. The narrow slit region is situated between the casting frame
and the substrate.
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Table 1. Properties for different materials: density ρ, kinematic viscosity η, electrical

conductivity σ, surface tension γ and skin depth δ =
√
1/ (πfµ0σ) assuming a frequency

of f = 10 kHz.

Material ρ [kg/m3] η [Pa⋅s] σ [S/m] γ [N/m] δ [mm]

Liquid silicon 2580 0.86 × 10−3 1.20 × 106 0.733 5.0
Solid silicon 2330 - 8.30 × 104 - 17.0
Graphite 1880 - 1.25 × 105 - 14.0
Copper 8960 - 6.00 × 107 - 0.7

A challenging task in realizing this idea technically is the need to fully control
the liquid silicon outflow. The AC magnetic fields, which are used for melting
inductively the silicon, bear a two-fold meaning. That is, a single excitation coil
provides both an inductive heater of the casting frame and a kind of magnetic valve.
The latter actively prevents leakage in the slit regions and reduces oscillations at
the extraction site of the silicon foil through electromagnetic forces. This Lorentz
force field acts to counter the gravitational forces on the melt, but the valve works
only because of additional capillarity effects based on strong surface tension. As
this effect can be influenced to take advantage, there is a considerable interest in
gaining a better understanding of the magnetohydrodynamics of the RGS process.
Recent activities on electromagnetic retention for liquid silicon have been reported
in [6].

A major problem of the RGS process which still has to be addressed is the
occurrence of flow instabilities and meniscus oscillations at the open slit, where
the moving substrate enters and leaves the casting frame. There is only very
limited literature about numerical simulations of the silicon melt flow for the RGS
process (e.g., [7, 8]). Moreover, all related simulations were mainly focused on the
crystallization process and solidification front shape of silicon ribbons. In contrast,
we have performed numerical investigations in order to study the influence of the
involved AC magnetic fields on the silicon melt during the RGS process.

1. Modelling overview. A typical associated process parameter set, which
evolved mainly from empirical analysis, is an RMS-current of IRMS = 1000A at a
frequency of f = 10 kHz to feed the excitation coils, in combination with a substrate
velocity uS = 0.1m/s. The most important properties of the involved materials,
as shown in Fig. 1, are listed in Table 1.

The casting region in the real RGS prototype machine [2] is a very complex
and detailed system. Especially the difference in scale between, e.g., the casting
frame of width of 156mm in relation to the magnetic valve at the wafer exit side of
less than 1mm is challenging for grid definition and computing capacity. Therefore,
a simplified set of modelling parameters and casting environment geometry was
developed. It is expected that this simplified model allows the calculation of the
main effects of the liquid silicon behavior, and its results should allow a comparison
to real process data from the RGS process. In this simplified model, the RGS wafer
size is given by 156 mm × 156 mm × 0.4 mm. A typical melt level height inside
the casting frame varies between h = 10mm and h = 30mm. In Fig. 2, one can
find detailed drawings of the model side (left) and top (right) view. All remaining
dimensions can also be found there.

To study the interplay of magnetic fields and fluid dynamics in the case of
the RGS process, a comprehensive model has to correctly represent a fully three-
dimensional and two-way-coupled system of AC magnetic fields and fluid flow with
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Fig. 2. Simplified numerical model geometry (dimensions in mm). The drawing on the
left represents both a central longitudinal section of the actual 3D-model and a derived
2D-version. On the right: the top view of one model half is displayed.

free surfaces at the slit and at top of the melt in the crucible. Furthermore, the
model has to account for the material values given above. The latter particularly
means dealing correctly with electrical conductivities of different orders of magni-
tude and very high surface tension forces at the interface between the silicon melt
and its surrounding atmosphere.

The magnetic fields may be described using the A-V -formulation of the quasi-
static Maxwell equations implying MHD approximations [9]. It can be shown that
assuming only a very small magnetic Reynolds number and neglecting magnetiza-
tion effects is valid for modelling the RGS process with sufficient quality. Thus,
the magnetic fields can be described as follows:

B = ∇×A ; E = − (∂tA +∇V ) ; ∥u ×B∥/∥E∥≪ 1 . (1)

Here the magnetic vector potential is denoted by A, the magnetic field by B, the
electric field by E, the electric scalar potential by V , the velocity field by u, and
the time by t.

Taking the magnetic vector potential with the applied Coulomb gauge ∇⋅A = 0
and the electric scalar potential instead of the magnetic and electric field allows
us to explicitly introduce an external source current density term jE(IRMS) into
the system, which represents the effect of the excitation coil [9, 10]. In case of a
constant (∇σ = 0) or even zero (σ = 0) electrical conductivity, it can be shown [11]
that the scalar potential may be incorporated into the vector potential, if A is
conceptually substituted with a modified version: Â = A + ∫∇V dt. That is, if we
imply a constant σ for each material, only A is required:

∇×∇ ×A + σµ0∂tA = µ0jE ; ∇ ⋅A = 0 ; (2)

j = jI + jE ; jI = −σ∂tA . (3)

The field jI represents the induced current density. To find suitable bound-
ary conditions for the magnetodynamic problem, the numerical domain is divided
into several sub-domains. The whole domain is firstly split into three main re-
gions. This comprises a conducting part (melt, graphite and solid silicon), a
non-conducting part (assuming there is only a bounded spherical atmosphere sur-
rounding all conducting parts), whose intersection constitutes the outer conductor
boundary, and the excitation coil. Secondly, the conducting part is again split into
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one sub-region for every simply connected area with a constant electrical conduc-
tivity. The second partitioning creates several inner boundaries, where jumps in σ
occur. The spherical outer boundary of the non-conducting region is necessary to
realize numerically the actual unboundedness. It can be modelled either by using
an infinite domain [12] or based on the hypothesis of fully decayed field amplitudes
if the size of the sphere is sufficiently large. A detailed mathematical description
of all boundary conditions can also be found in [9].

By introducing a complex-valued sinusoidal of the involved harmonic AC
fields, Eqs. (2) and (3) may be transformed into their frequency domain for the
angular frequency ω = 2πf . This approach leads to a quasi-stationary problem
since the time derivatives may then be substituted with a complex-valued angular
frequency (∂/∂t = iω).

The momentum balance of the fluid, which is part of the conducting region,
depends on the time-averaged Lorentz force,

FL = ⟨j ×B⟩t . (4)

Via the Ampere’s law, this force field can be expressed as a sum of its rota-
tional and gradient parts:

FL = FL,rot +FL,grad; (5)

FL,rot = 1/µ0⟨(B ⋅ ∇)B⟩t ; FL,grad = −∇pB , (6)

where pB is the time-averaged magnetic pressure given by

pB = 1/(2µ0)⟨B2⟩t . (7)

The fluid dynamics, describing the silicon melt flow, is governed by the prin-
ciple of conservation of mass and momentum. For our RGS model, this leads to
the isothermal, incompressible Navier–Stokes equation [13] with additional terms
for gravity and for the time-averaged Lorentz force, as described in Eqs. (4) to (7):

ρ [∂tu + (u ⋅ ∇)u] = ∇ ⋅ τ ′ +FL,rot; ∇ ⋅ u = 0; (8)

τ ′ = η [∇u + (∇u)T ] − p′I . (9)

Here τ ′ represents the stress tensor including a modified diagonal fluid pressure,

p′ = p + pG + pB with pG = −ρ (g ⋅ x) , (10)

which includes the fluid pressure p and both the magnetic and the hydrostatic
potential (the coordinates x). Surface tension is only acting at free surface bound-
aries. It is thereby worth to mention that the viscosity of the external atmosphere,
which is in contact with the liquid melt at the conductor boundary, is several or-
ders of magnitude smaller than the viscosity of the melt itself. Thus, the fluid
boundary condition at the moving free surface with the free surface velocity uI,
its outward unit normal n, the unit tangent vector t and a corresponding stress
vector s = τ ′ ⋅ n can be modelled using a simplified Young–Laplace equation [14],

u ⋅ n = uI ⋅ n; (11)

s ⋅ n = 2κγ − (pE + pG + pB) ; s ⋅ t = 0; (12)

κ = −1/2 (∇Γ ⋅ n) ; ∇Γ = ∇− n∂n = (I − nnT )∇ . (13)

Therein the external fluid appears only through its pressure pE. The surface
gradient operator ∇Γ defines the mean curvature κ of the free surface and the
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surface tension coefficient γ is assumed to be constant (no Marangoni effect). For
a fixed (uI = 0) and planar surface (κ = 0), Eqs. (11) and (12) can be simplified
again to get a free-slip boundary condition with a fixed pressure:

u ⋅ n = 0; s ⋅ n = − (pE + pG + pB) ; s ⋅ t = 0 . (14)

For arbitrarily shaped interfaces, as given by Eq. (11), the normal component
of the velocity is not necessarily zero. Thus, the interface has to be moved accord-
ingly, while still ensuring its impermeable nature. In the scope of our work, the
Arbitrary Lagrangian–Eulerian (ALE) technique was chosen to realize the inter-
face tracking [15, 16]. In simplified terms, the essential idea of ALE for free surface
flows is to allow the grid, which is used for discretization, to move independently
on the fluid flow. Only the free surface is under constraint, such that the fluid and
mesh normal velocity u ⋅n = uI ⋅n equals to the mesh normal velocity uM ⋅n there.
For all other boundaries, uM is restricted differently, according to the modelling.
The independent mesh-movement away from the boundaries then allows a free and
preferably smooth mesh point distribution. In our case, a Laplace smoothing was
utilized (e.g., [17]).

Stationary walls were modelled with the no-slip boundary condition (u =
0), whereas for the moving substrate wall an inhomogeneous Dirichlet boundary
condition was necessary (u = uS ⋅ ex, the process x-direction). Along the wetted
walls, the interface contact line may have the freedom to slide. Thus, the velocity
must not be restricted there directly. To model this behavior, the generalized
Navier slip boundary condition was consulted [18, 19]:

u ⋅ n = 0; s ⋅ t = − (η/β) u ⋅ t . (15)

The slip length β is present to relate a tangential boundary friction force to
the current local slip velocity (it virtually sets u = 0 at a distance β behind the
wall). For our calculations, β = 0.01 ⋅ hE was used, where hE denotes a mean local
mesh (element) size of the discretized numerical model.

2. Simulation results. The basis of our analysis was to gain detailed in-
formation of all involved fields. To reduce the computational effort, we thought
of the melt domain to be fixed during this first step: the magnetic field calcula-
tions including the Lorentz force were performed using the finite element solver
OPERA [20]. The results revealed high amplitudes for FL. In Fig. 3 (left), the
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Fig. 3. Lorentz force density (left) and instantaneous velocity field (right) for a fixed
fluid domain: in both figures all solid material domains are hidden. The front part shows
the related vectors, the rear part the corresponding amplitudes for one half of the fluid
domain, respectively. Both parts are separated by the central sectional plane according
to Fig. 1. The process direction is indicated by x.
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Lorentz force density field fL = FL/ρ reaches values of up to 250m/s2 in all regions
close to the edges and corners of the fluid domain.

With this in mind, we concluded that the liquid silicon melt would actually
be subject to a strong deformation if we had not restricted our model as a premise.
The corresponding forced fluid flow for the fixed fluid geometry was simulated with
a finite volume solver of the openFOAM [21] library suite. We have, therefore,
extended the incompressible pimpleFoam solver to include an interpolated Lorentz
force field from OPERA. The computation was conducted on a mesh with ≈ 2.5 ×
106 cells based on the k-ω-SST turbulence model. The resulting velocity field u
is illustrated in Fig. 3 (right) for comparison. The influence of the Lorentz force
on the fluid flow is much more intense than the driving force from the moving
substrate wall, and that is a substantial finding here. A boundary driving effect
of the moving substrate along the x-direction can barely be identified since the
global maximum velocity magnitude is more than one order of magnitude higher
than the process velocity uS.

It is also worth mentioning that our results evidence of two high velocity
jets inside the slit region, where the silicon foil is extracted. The jets, of which
one is shown in Fig. 3 (right) along the lower right edge, are perpendicular to
the process direction and pointing towards the center of the casting frame. This
may lead to pressure fluctuations at the trailing meniscus and will be subject to
further investigations. Based on our results for the fixed geometry, we assume
that the magnetic force is mainly responsible for exciting flow instabilities. As
the strong Lorentz force is, however, crucial to balance the gravitational force, it
cannot simply be reduced, e. g. shielded, in order to improve the flow behavior
for an increased RGS process stability. This can be demonstrated with the help
of the magnetic pressure.
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Fig. 4. Magnetic pressure pB and Lorentz force density fL along the wafer front (left,
half width y, center: y = 0mm, side: y = 78mm) and side (right, arc length x, front:
x = 0mm, back: x ≈ 80mm) for the varying side wall thicknesses (10–25mm) of the
casting frame.
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The top two graphs in Fig. 4 illustrate the magnetic pressure pB along a
wafer side (right) and front (left) for different side wall thicknesses of the casting
frame as a result of an investigation on how the melt flow could be shielded to
reduce the magnetic forcing on the bulk region. The magnitude of the hydrostatic
pressure at the bottom of the casting frame results in pG = ρgh ≈ 506N/m2 for
a fixed melt level height of h = 20mm. On the one hand, comparing pB with the
trends in Fig. 4 (top-right) clearly shows that a properly working magnetic valve,
i.e. pB ≈ pG, can be numerically proven. On the other hand, the two bottom
graphs in Fig. 4 demonstrate the redistribution of the magnetic field due to small
geometric changes and the strong dependence between pB and fL, as indirectly
given by Eq. (5). In this case, it is even depicted that shielding the wafer only
partially may lead to a strong field magnification in some other regions.

Another simulation with the assumption of a fixed melt geometry was per-
formed to find the total system inductivity L of the RGS model depending on the
parametrized melt level height h. The power supply of the excitation coil consists
of an oscillating circuit operating at a resonance frequency. As the resonance fre-
quency of this circuit changes with L, the idea arose to utilize this behavior for a
possible contactless fill level sensing. Fig. 5 shows the total magnetic inductivity
L = W /I2RMS of the modelled system against different melt level heights, where
W denotes the time-averaged magnetic field energy W = 1/2 ∫⟨H ⋅B⟩tdV . The
total system inductivity proved to be not as sensitive as expected for measuring
the melt level height based on phase or frequency shifts. There is only a small
change of just about 0.3% for L in the range of h = 5mm and h = 40mm. Further
investigations will show if this is still enough to produce a significant influence on
the driving oscillating circuit.

So far, all our presented results were predicated for a fixed melt domain. As
we actually get melt deformations due to the high involved Lorentz force density,
recent developments were engaged in revising our model to account for the dynamic
geometry. To limit the complexity of the extension, we only focused on the top of
the fluid domain as a first approach. Modelling the surface movement at the slit
regions is expected to be much more demanding in terms of the simulation effort
due to its small length scales compared to the whole model.

The Lorentz force acting on a conducting liquid inside a coil roughly points
towards the center of this coil. Thus, the shape of the deformed fluid domain for
these and similar cases looks similar to a dome. This process is often referred to as
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Fig. 5. Magnetic inductivity based on IRMS for different melt heights h (height along
the z-axis).
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“dome shaping”. Conducting simulations of such (and similar) fully coupled MHD
systems with a free surface is part of a broad field of active research to investigate
industrial applications, where induction melting or levitation of liquid metals is
involved. In recent publications, the work which is closely related to modelling
the RGS physics [22–25] is, however, limited to axially symmetric geometries and
specialized codes (e.g., SPHINX [22]). Only recently, first three-dimensional sim-
ulations have been performed based on a spectral method [26] for liquid droplets
and by means of coupling ANSYS products [27–31] for more general applications.
Coupling solvers or methods (e.g., Spectral, Finite Volume or Finite Element)
may generally bring the need of interpolation and thus additional overhead is pro-
duced, which means increased computational costs. To circumvent interpolation,
we selected a different approach to model the dome shaping for the RGS process.
This was realized with COMSOL Multiphysics [32], which enabled us to solve
all physics (magnetodynamics, fluid dynamics and a moving mesh interface with
adaptive re-meshing) within one single Finite Element framework.

The latest results for a 2D simulation of the central longitudinal section of the
3D geometry with a mesh consisting of ≈ 10k elements are presented in Fig. 6. The
magnitudes of the Lorentz force (left) and velocity field (right) are in quite good
agreement with the central longitudinal section of the 3D model even though the
flow pattern has changed. From the shape of the dome and based on the maximum
field magnitudes, this demonstrates a manifold f low character and that none of
the momentum source terms in Eq. (8) is clearly dominating. This is one major
reason, which makes the whole modelling challenging, and simulations require
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Fig. 6. Dome shaping of the fluid domain for a simplified 2D model (central section of
the 3D geometry): time-averaged Lorentz force (top) and fluid velocity (bottom) at the
simulation time t = 3 s after applying the magnetic field.
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Fig. 7. Dome shaping of the fluid domain for a 3D model (without slit regions): time-
averaged Lorentz force (front right part/slice) and fluid velocity (upper left part/slice)
at the simulation time t = 0.2 s after applying the magnetic field.

high computational costs, especially, in 3D. But it also shows the dominance of
the magnetic forcing compared to the driving effect of the moving substrate. Even
though the simulation approach with COMSOL is promising and very efficient,
long-term calculations and deeper flow analysis are still in progress. For several
model parameters we experienced stability issues due to geometry parametrization
errors with the latest version 4.4 of COMSOL. A bug-fix is already scheduled for
the upcoming version 5.0 of COMSOL.

Owing to the existing problems with COMSOL 4.4, we have chosen a different
setup for the simulation of the three-dimensional dome shaping. In order to utilize
the coupling of two codes with greatly reduced computational overhead due to
interpolation, a combination of an adapted interTrackFoam [33] solver library of
OpenFOAM Extend Project and COMSOL was used. The Lorentz force calculation
with interpolated free surface data was made with COMSOL. The resulting data
were then iteratively coupled with interTrackFoam, which itself was used for flow
calculations with interpolated Lorentz force data. As interTrackFoam is based
on the ALE moving mesh method, it was possible to “carry“ the Lorentz force
distribution with the mesh for a defined and reasonable small simulation time.
This arrangement allowed us to skip the re-calculation of the magnetic fields for a
certain amount of time steps to greatly improve the overall performance.

The first results on the basis of this technique are shown in Fig. 7. The
maximum Lorentz force density is lower compared to the 2D results because of the
omitted slit regions (especially the trailing part). However, the sections through
the central bulk region predict similar physics as our 2D-model in terms of the
flow pattern, dome shape and field magnitudes. A more comprehensive study
is currently being conducted, but it still needs more research and experience. A
strong surface tension and a large deformation make high demands to the numerical
scheme of the interTrackFoam solver and render it sensitive to a set of modelling
parameters. Finally, the implementation of the wall contact model has to be
improved, too.

3. Conclusion and outlook. The RGS process is a promising technology
for future silicon wafer production, but there are some remaining open questions
to get it ready for a stable and continuous production. The involved physics are
challenging for a numerical investigation which is necessary for improving the pro-
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cess controllability and stability. We have successfully performed 3D simulations
with a fixed melt geometry to numerically confirm the functioning melt retention
based on magnetic fields. It was illustrated that a retention effect is correlated
with a forced fluid flow. A parameter study revealed the total system inductivity
as a function of the melt level, which might be usable for a fill-level sensing of
the silicon melt. Finally, we demonstrate that the surface deformation is substan-
tially important for a satisfactory model. Supported by the results of our work it
has become apparent that gaining a detailed insight into the flow and its surface
dynamics is a key for controlling the RGS process by means of tailored magnetic
fields. Further investigations will address the mentioned stability issues, an im-
proved modelling and general code validation. Additional work will be devoted
to reveal how the magnetic field distribution is influenced by different coil geome-
tries, power supply parameters as well as by a different electrical conductivity of
the moving substrate.
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