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For applications in nuclear fusion reactors where magnetic fields are very strong, liquid
metal flows in the cores of ducts can often be regarded as inertialess and practically
inviscid, while viscous effects are localized in thin boundary layers. The intense electro-
magnetic Lorentz forces, resulting from the interaction of induced electric currents and
imposed magnetic field, tend to remove flow variations along magnetic field lines and
they force the fluid to circulate mainly in planes perpendicular to the field. The estab-
lished quasi-two dimensional magnetohydrodynamic flow can be predicted by means of
an approximate model by reducing the basic governing equations to a 2D problem by
analytical integration along magnetic field lines. Such models have been applied in the
past by numerous authors to investigate duct flow problems and magneto-convection.
However, limitations of those Q2D approaches have never been systematically studied.

Introduction. Liquid metal flows in strong magnetic fields are dominated
by Lorentz forces, while viscous effects are confined to very thin boundary lay-
ers. The flow in the inviscid cores is highly correlated along magnetic field lines
and changes of variables in this direction are often negligible. This fact has been
exploited in the past to derive quasi-two dimensional (Q2D) model equations fol-
lowing the ideas proposed by Sommeria and Moreau (1982) [1]. Q2D models enable
an efficient solution of 3D MHD problems, e.g., for shear flow instabilities [2] [3],
DNS simulations of Q2D turbulent flows [4], including heat transfer and buoyant
flows [5, 6, 7], interpretation of experimental data [8, 9], or simulations for fusion
blanket applications [10]. It has been shown that results for inertial isothermal
flows obtained by the Q2D model can be further improved by a proper modelling
of inertia terms, which leads to “barrel” or “cigar” shape flow patterns aligned
along the magnetic field [11, 12] instead of pure 2D structures.

The purpose of the present work is showing that Q2D models may have signifi-
cant deficits for particular classes of buoyant flows, a fact that is not at all obvious
from a first point of view. As an example, we consider buoyant MHD flows in
a horizontal liquid metal layer of height H, length lH and width 2aH, Fig. 1.
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Fig. 1. Sketch of geometry and coordinates. The flat cavity, filled with liquid metal,
is differentially heated at x/H = ± 1/2, such that a mean axial temperature gradient
Gx̂ establishes. Top and bottom walls at y/H = ± 1/2 have temperature profiles that
vary linearly between the values of the differentially heated walls. The other walls are
adiabatic. The convective motion is damped by a horizontal magnetic field in the z-
direction.
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We apply the Q2D model equations and compare results with 3D numerical sim-
ulations of full governing equations. Such geometries are typical in horizontal
Bridgman crystal growth or for liquid metal blankets of fusion reactors.

1. Model equations. Buoyant flows of incompressible, viscous, electrically
conducting fluids in a uniform horizontal magnetic field are described by nondi-
mensional equations for a balance of energy, momentum and mass, by the Ohms
law and by an electric potential equation to ensure charge conservation ∇ ⋅ j = 0:

PrDtT = ∇2T, (1)

Dtu +∇p −∇2u = GrT ŷ +Ha2 (j ×B) , (2)

∇ ⋅ u = 0, (3)

j = −∇ϕ + u ×B, (4)

∇2ϕ = ∇ ⋅ (u ×B) = B ⋅ω. (5)

Here T , u, B = Bẑ, j, p and ϕ stand for the temperature difference with respect
to a reference value, velocity, magnetic field, current density, pressure and electric
potential scaled by characteristic values ∆T , u0, B0, σu0B0, σu0B

2
0H and u0B0H,

respectively.
Dimensionless parameters are the Prandtl number, the Grashof number and

the Hartmann number:

Pr = ν

κ
, Gr = gβH3∆T

ν2
, Ha = B0H

√
σ

ρν
. (6)

Kinematic viscosity ν, thermal diffusivity κ and electrical conductivity σ are as-
sumed to be constant, ρ is the density at the reference temperature and β is the
coefficient of volumetric thermal expansion. B0 is a typical magnitude of the mag-
netic field, u0 = ν/H is a characteristic velocity and ∆T is derived from the mean
horizontal temperature gradient Gx̂ as ∆T = GH. At all walls we have no-slip
u = 0. If walls are electrically conducting, currents may continue their path inside
the walls and create there a distribution of the wall potential ϕw according to the
thin-wall condition [13], j ⋅ n = c∇2

wϕw, where c = σwtw/(σH) is the conductance
parameter of walls with conductivity σw and thickness tw, ∇w is the gradient in
the plane of the wall and the unit normal n points into the fluid.

It is well known that for strong magnetic fields, Ha≫ 1, the flow takes place
preferentially in planes perpendicular to B, i.e. u ≈ uε, and it is described by an
equation for the field-aligned component ωz of vorticity ω = ∇×u� that is obtained
by taking the curl of Eq. (2)

(∇×Dtu�)z −∇
2ωz = Gr∂xT +Ha2∂zjz. (7)

Following the ideas usually referred to as the Q2D approach (see [1] and others),
the vorticity equation (7) and the potential equation (5) are integrated along
magnetic field lines (the overbar above variables denotes average along field lines):

(∇×Dtu�)z −∇
2
�ωz −

1

a
∂zωz(z = a) = Gr∂xT +Ha2

1

a
jz(z = a), (8)

∇2
�ϕ +

1

a
∂zϕz(z = a) = ∇2

�ϕ −
1

a
jz(z = a) = ωz. (9)

When Q2D models are applied, it is usually assumed that the potential does
not change along magnetic field lines, ϕ = ϕ(z = a) = ϕH . With the thin-wall
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condition jz(z = a) = −c∇2
�ϕH [13] and viscous friction ∂zωz(z = a) = −Haωz

applied at the Hartmann wall, jz and ϕ = ϕH can be eliminated from Eqs. (8) and
(9) and the Q2D equation for vorticity becomes

(∇×Dtu�)z −∇
2
�ωz = Gr∂xT − (

cHa2

a + c
+ Ha

a
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1/τ

ωz. (10)

Instead of solving Eq. (10), we may solve the following model equation, the curl
of which yields Eq. (10):

Dtu� −∇2
�u� +∇�p = GrT ŷ − 1

τ
u� with ∇ ⋅ u� = 0. (11)

The model derived above is valid only for a uniform horizontal temperature gradi-
ent, as shown in the following. For liquid metals with Pr ≪ 1 conduction of heat
governs Eq. (1) which supports the ansatz T = x + Pr θ, where θ describes devia-
tions from pure heat conduction. Flows with Gr ≫ 1 and Ha ≫ 1 are dominated
by the right-hand side of Eq. (7) through a balance between Lorentz forces and
buoyancy, and for Pr≪ 1 the current density and potential become approximately

−∂zjz = ∂zzϕ =
Gr

Ha2
∂xT ≈

Gr

Ha2
. (12)

By integration along z, the potential ϕ and its mean value ϕ along z are determined
as

ϕ = ϕH +
Gr

2Ha2
(z2 − a2) and ϕ = ϕH −

a2Gr

3Ha2
, (13)

where the potential ϕH at the Hartmann wall at z = a has been introduced as an
integration function. Already at leading order the potential ϕ is not at all uniform
in the core along the field lines. For flows, where ∂xT ≠ const, the last term in Eq.
(13) depends also on (x, y) and, finally, an additional contribution will appear in
Eq. (11). Moreover, the electric properties of field-aligned walls never enter into
the Q2D model, although their conductance may have an essential impact on the
global closure of current paths with severe consequences for the flow structure.
This will be shown in the following by some selected examples.

2. Results.
2.1. Insulating walls. Let us first consider flows in cavities with walls that

are electrically poorly conducting or insulating, as considered for instance in [7].
Results from numerical simulations using the Q2D model and full 3D equations are
compared (the latter ones with up to 8.6 ⋅ 106 grid points, all layers well resolved,
grid-independent results achieved).

Contours of the velocity magnitude for a = 1, Pr = 0.015, Gr = 107, Ha = 1000,
c = 0 are shown in Fig. 2. It can be observed that a single stationary global
recirculation establishes. Near the hot and cold ends of the geometry the fluid
moves upward and downward, respectively, while in the central part the flow is
preferentially horizontal and aligned parallel to the mean temperature gradient.
A qualitative comparison displayed in the figure shows already good agreement
between Q2D and 3D simulations. This is further confirmed by comparing the
velocity and the temperature along a vertical line in the middle of the cavity, as
shown in Fig. 3. For parameters used in the simulation, the Q2D model is able
to predict well the velocity distribution in the core and reasonably well the decay
towards the field aligned walls at y = ± 1/2. Nevertheless, one can observe still
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Fig. 2. Colored contours of the velocity magnitude in the vertical symmetry plane

z = 0 obtained by Q2D and 3D simulations for a = 1, Gr = 107, Pr = 0.015, Ha = 1000,
c = 0.
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Fig. 3. Comparison of axial velocity and temperature along y at (x, z) = (0,0) obtained
by Q2D and 3D simulations for a = 1, Gr = 107, Pr = 0.015, Ha = 1000, c = 0.
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Fig. 4. Colored contours of the velocity magnitude in the vertical symmetry plane

z = 0 obtained by Q2D and 3D simulations for a = 1, Gr = 108, Pr = 0.015, Ha = 1000,
c = 0.

minor differences between the Q2D model and 3D simulations. More precisely, the
Q2D model slightly underestimates the velocity when approaching top and bottom
walls. The prediction of the vertical temperature distribution is also good.
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When the Grashof number is increased to Gr = 108, the flow intensifies and the
initially laminar stationary motion becomes unstable and shows time-dependent
undulated flow patterns along the horizontal walls. This behavior is also well
predicted by the Q2D model in accordance with 3D simulations, as shown in
Fig. 4. However, as expected (see Fig. 3), the velocity predicted by the Q2D
model is a bit smaller than the one from 3D simulations.

2.2. Conducting walls. As a second case, we consider magneto-convection
in a perfectly electrically conducting cavity with c =∞. Fig. 5 shows contours of
the velocity magnitude in the vertical symmetry plane z = 0 for a = 1, Gr = 108,
Pr = 0.015, Ha = 1000. We observe already a strong qualitative disagreement
between Q2D and 3D simulations. While Q2D solutions show a more or less
smooth velocity field, 3D simulations predict a low velocity core and thin boundary
layers with a very high velocity along walls at y = ±1/2 and x = ± l/2. Results
deviate by more than one order of magnitude. This can be seen by a quantitative
comparison of axial velocity profiles, as shown in Fig. 6. However, the significant
disagreement is present only in layers along parallel walls, while in the core the
two solutions agree quite well. Nevertheless, since the layers carry the major mass
flux, a 3D simulation is mandatory and Q2D results are practically useless, as can
be seen also by a comparison of the temperature profiles in the middle of the cavity
(Fig. 6). The flow rate in field aligned layers that is missing in the Q2D model can
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Fig. 5. Colored contours of the velocity magnitude in the vertical symmetry plane

z = 0 obtained by Q2D and 3D simulations for a = 1, Gr = 108, Pr = 0.015, Ha = 1000,
c =∞.
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Fig. 6. Comparison of axial velocity and temperature along y at (x, z) = (0,0) obtained
by Q2D and 3D simulations for a = 1, Pr = 0.015, Ha = 1000, c =∞.
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be estimated according to [14], e.g., at the upper wall for a cross-section x = const
as

Qδ =
a

∬
−aδ

udydz = −
a

∬
−aδ

∂yϕdydz = −2a∫
δ

∂yϕdy = −2a (ϕw − ϕδ) = −2a
a2Gr

3Ha2
. (14)

Here ∫δ dy indicates integration across the layer. For perfectly conducting walls

ϕw = 0, while the potential ϕδ at the edge of the layer is given by Eq. (13).
The vorticity in the core at leading order may be estimated from Eq. (10) as
ωz = ∂xv − ∂yu = τGr, from which the axial core flow rate in the upper half of the
cavity results by integration as

Qc =
a1/2

∬
−a0

udydz = −a
4

Gr

Ha2
. (15)

This simple estimate shows clearly that the error in the not-considering paral-
lel layers in Q2D models can be significant. Further 3D simulations with perfectly
conducting Hartmann walls and insulating field-aligned walls show an additional
increase in side layer velocity by another order of magnitude compared to the
previous case with c = ∞, so that a comparison with corresponding Q2D results
becomes even worse.

3. Conclusions. Q2D models had been often applied in the past as efficient
tools for numerical simulations of various MHD phenomena for Ha ≫ 1. In the
present work, it has been shown that those models may have severe deficits, for
instance, since the electrical conductivity of field-aligned walls is not considered.
Moreover, for the derivation of Q2D models it is usually assumed that the electric
potential is uniform along magnetic field lines, an assumption that is not justified
for convection problems. A comparison with 3D numerical simulations suggests
that for electrically insulating walls Q2D models give reasonable estimates for
velocity and heat transfer for both stationary and time-dependent flows. For
electrically conducting walls, however, Q2D results become useless so that 3D
simulations are mandatory.
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