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A linear stability analysis is performed to investigate the onset of convective motions
in a flat cavity filled with liquid metal in which a volumetric heat source is distributed
uniformly and a horizontal magnetic field is imposed. A quasi-2D mathematical model
is derived by integrating the 3D governing equations along the magnetic field direction,
which yields a dissipation term in the 2D equations that accounts for 3D viscous effects
in thin boundary layers at walls perpendicular to the field. This type of buoyant flow
without magnetic field has been investigated by Roberts [1] and the present study extends
those results to magnetohydrodynamic conditions. Numerical simulations are performed
to support the analytical results and to describe the main convective flow patterns.

Introduction. Thermal convective motion produced by uniform internal heat
sources in a liquid metal layer, as analyzed in the present study, is a fundamental
heat transfer problem of interest for engineering applications such as, e.g., nuclear
fusion reactors. Here a plasma is confined in a torus by means of a strong mag-
netic field. Neutron heat is removed by a liquid metal circulating in the so-called
blanket. Most of the nuclear power is deposited in the liquid metal leading to sig-
nificantly non-uniform thermal conditions that result in complex convective flow
patterns that are affected by the magnetic field [2, 3].

The problem of natural convection driven by a temperature difference across
a fluid layer, the so-called Rayleigh-Bénard convection, has been extensively an-
alyzed for applications in crystal growth technology. When the fluid is heated
from below, it remains motionless until the temperature difference, quantified by
the non-dimensional Rayleigh number Ra, exceeds a critical value Racr and then
thermal convection sets in. Chandrasekhar [4] shows that by applying a magnetic
field instabilities occur at higher values of Ra compared to hydrodynamic condi-
tions. This means that the induced electromagnetic forces tend to stabilize the
flow. At marginal stability convection appears in the form of rolls aligned with the
horizontal component of the magnetic field. Analytical and experimental investi-
gations of MHD Bénard-convection can be found in [5]. When a strong magnetic
field is applied, electromagnetic Lorentz forces elongate vortices along magnetic
field lines and force the fluid to move in planes perpendicular to the field, while
the motion along field lines is damped [6]. This leads to a quasi-two dimensional
(Q2D) MHD flow, where dissipation losses, due to Joule and viscous effects, are
localized in thin Hartmann boundary layers along the walls perpendicular to the
magnetic field. An explanation of dissipative effects in Hartmann layers is given
in [7, 8]. Q2D models reduce the basic governing equations to a 2D problem by
analytical integration along magnetic field lines. In the 2D equations, 3D MHD
effects are modelled by a term that accounts for viscous and Joule dissipation in
Hartmann layers. Those approaches are used to investigate problems related to
fusion blankets, where intense magnetic fields are present [9].

In the problem studied in this paper, convective motions are driven by non-
uniform thermal conditions caused by heat sources distributed in a fluid. The
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steady laminar hydrodynamic convection in an infinite horizontal fluid layer con-
fined between an isothermal upper plate and a lower one that is thermally in-
sulating has been studied by different authors. This configuration differs from
Bénard-convection since temperature boundary conditions are asymmetric and the
vertical temperature profile in the motionless state is parabolic rather than linear.
Experimental studies of instabilities in a horizontal fluid layer heated uniformly
are described in [10]. Roberts [1] carried out a stability analysis that showed that
convective motions occurr at Racr ≃ 2772 in the form of marginally stable rolls.
Thirlby [11] performed a numerical analysis and determined the parameters at
which polygonal cells and rolls occur in hydrodynamic flows.

The aim of the present study is investigating the influence of a horizontal
magnetic field on the onset of instabilities in liquid metal flows with volumetric
thermal sources and identifying the main convective patterns. The geometrical
configuration chosen for this study is the one used in [1]. Model equations describ-
ing the Q2D MHD convective flow are derived (Section 2) and a linear stability
analysis is performed (Section 3) to determine the onset of convection depending
on the intensity of the applied heat source and the strength of the magnetic field.
A better understanding of the features of convective flow patterns is obtained by
means of numerical simulations.

1. Formulation of the problem and governing equations. Let us con-
sider an electrically conducting fluid, such as a liquid metal, filling a horizontal
shallow cavity, in which a volumetric heat source q is uniformly distributed. The
top wall at y = H is isothermal, the bottom at y = 0 adiabatic, ∂T /∂y = 0, and
the Hartmann walls at z = ±A, perpendicular to the magnetic field, are adiabatic,
∂T /∂z = 0 (Fig. 1).

Density changes due to temperature variation are restricted to the buoyancy
term ρβ (T − Tref)g, according to the Boussinesq approximation. Here ρ is the
density at the reference temperature Tref , β the volumetric thermal expansion
coefficient and g = −gŷ is the gravitational acceleration. The non-dimensional
equations governing the problem account for the balance of momentum, conser-
vation of mass and charge, and the current density is determined by the Ohm’s
law:

1

Pr
(∂v
∂t
+ (v ⋅ ∇)v) = −∇p +∇2v +RaT ŷ +Ha2 (j ×B) , (1)

∇ ⋅ v = 0, (2)

∇ ⋅ j = 0, (3)

j = −∇ϕ + v ×B. (4)

Fig. 1. Sketch of the geometry and reference system. Walls perpendicular to the
magnetic field are thermally insulating, the top wall of the cavity is kept at a constant
temperature; the bottom is adiabatic. Periodic conditions are assumed in x-direction. A
constant magnetic field is applied in horizontal z-direction.
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The temperature distribution is given by the energy balance equation

∂T

∂t
+ (v ⋅ ∇)T = ∇2T + 1. (5)

The dimensional volumetric heat source q has been scaled by λ∆T /H2 and
normalized to unity by defining the characteristic temperature difference as ∆T =
qH2/λ. The dimensionless variables v, t, j, ϕ and B are obtained by scaling
velocity, time, electric current density, electric potential and magnetic field by
the reference quantities v0 = α/H, H2/α, σv0B0, v0B0H and B0, respectively.
The typical length scale H is the distance between horizontal walls. Thermal
diffusivity α = λ/(ρcp), thermal conductivity λ, specific heat cp, kinematic viscosity
ν and electrical conductivity σ are assumed to be constant in the temperature
range considered. The non-dimensional temperature T is given by (T ∗−Tref)/∆T ,
where T ∗ is the local dimensional temperature. The dimensionless parameters
that control the flow are the Prandtl number Pr, the Rayleigh number Ra and the
Hartmann number Ha:

Pr = ν
α
, Ra =

gβqH5ρcp

νλ2
, Ha = B0H

√
σ

ρν
. (6)

The Prandtl number represents the rate of momentum diffusion to the one of
heat diffusion. The Rayleigh number describes the intensity of the applied heating.
The Hartmann number gives a non-dimensional measure for the strength of the
magnetic field. In order to quantify the magnitude of convection, we introduce
a quantity defined as the ratio between mean temperature differences across the
fluid layer without motion and with convection [1, 11]:

M = ∫V
TconddV

∫V TconvdV
= 1

3T
. (7)

2. 2D model equations. The procedure followed to obtain the equations
for the Q2D model is analogous to the one used in [5, 7, 8]. Starting from the
3D equations (Section 1), an equation for vorticity ω = ∇ × v is derived. For the
given boundary conditions and an applied magnetic field in z-direction the flow is
characterized by a Q2D velocity v = (u, v,0) and vorticity ω = (0,0, ω), where u,
v, ω may depend on (x, y, z):

1

Pr
(∂tω + u∂xω + v∂yω) = ∇2ω +Ha2∂zjz +Ra∂xT. (8)

In a quasi 2D flow, the velocity and vorticity can be expressed by a separation
ansatz, e.g., u = û(t, x, y)f(z) By integrating the vorticity equation along magnetic
field lines, with no slip at Hartmann walls, f(z = ±a = ±A/H) = 0, and thin wall
condition [12], we obtain

1

Pr
(∂tω̂ + û∂xω̂ + v̂∂yω̂) = ∇2

xyω̂ −
1

τ
ω̂ +Ra∂xT with

1

τ
= Ha

a
+ cHa2

a + c
, (9)

where c = σwtw/(σH) is the conductance parameter that gives the ratio of the
conductance of the wall material with thickness tw and electrical conductivity
σw to the one of the fluid. In Eq. (9), terms on the left-hand side represent the
convective transport of vorticity and its time variation, on the right-hand side there
are two dissipation terms. The first one describes viscous losses due to gradients
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of vorticity in a plane perpendicular to B. The term −ω̂/τ represents viscous
dissipation in the Hartmann layers and Joule dissipation in layers and in the thin
electrically conducting wall. The dissipation factor 1/τ is related to a typical decay
time of the vorticity [7]. For electrically insulating Hartmann walls (c = 0), we find
1/τ → Ha/a, and for perfectly conducting walls (c = ∞), 1/τ → Ha2, namely, in
ducts with highly electrically conducting walls a rapid damping of perturbations
occurs.

3. Linear stability analysis. In the problem studied, the basic steady
state is motionless and there is a parabolic temperature distribution along the
vertical coordinate y (see Fig. 1). When the internal heat source, i.e. the Rayleigh
number Ra, is large enough, the base state loses its stability due to increased
buoyancy forces that are not balanced anymore by viscous effects. Convective
motions occur, whose intensity depends on the strength of the internal heat source
(Ra) and on the magnitude of the applied magnetic field (Ha). A linear stability
analysis is performed that consists in following the evolution of small perturbations
applied to the equilibrium state by linearizing equations (5) and (9). The stability
is determined by solving the resulting eigenvalue problem. In order to derive
disturbance equations, temperature, velocity and vorticity are decomposed as the
sum of a basic state denoted by the subscript ‘0’ and a perturbation indicated
by prime, e.g., T = T0 + εT ′, where ε is a small parameter. Those expressions
are introduced into Eqs. (5) and (9), and the terms of O(ε2) are neglected in
the small perturbation limit. We expand perturbations in normal modes as, e.g.,
T ′ = iΘ(y)est+ikx, where k is a real horizontal wavenumber, s is the temporal rate of
growth of the perturbation. In order to satisfy mass conservation (2), we introduce
a stream function ψ′(x, y), such that v′ = ∇× (ψ′ ⋅ ẑ) and ω′ = −∇2ψ′. After some
mathematical work, the equations describing the stability of the problem become:

(D2 − k2 − 1

τ
− s

Pr
)Ω − kRaΘ = 0,

(D2 − k2 − s)Θ − kyΨ = 0 (10)

(D2 − k2)Ψ +Ω = 0,

where D2 = ∂2/∂y2 and Ω, Θ, Ψ are the amplitude functions of vorticity, temper-
ature and stream function perturbations, respectively. A numerical procedure has
been implemented in Matlab, where finite difference techniques are used for the
solution of the eigenvalue problem.

For given (k,Ra), a generalized discrete eigenvalue problem A(k,Ra)x = sBx
is solved. The eigenvector x is composed by Ω, Θ and Ψ at corresponding grid
points. The solution procedure is as follows. For a given wave number k, the
Rayleigh number Ra is varied till a value is reached for which an eigenvalue s
exists with a real part equal to zero, i.e. until the solution reaches the stability
limit. This couple (k,Ra) represents a point on the neutral curve Ra(k) (see Fig.
2). Instability sets in for Racr = min(Ra(k)) at the corresponding critical wave
number kcr.

4. Results. For 1/τ → 0, the problem is equivalent to the hydrodynamic flow
(Ha = 0) considered in [1], for which Racr = 2772 and kcr = 2.63 are predicted. This
case is first investigated to validate the used numerical model. In a second step,
a uniform horizontal magnetic field is imposed and its influence on the stability
of the considered magneto-convective flow is studied. Numerical simulations are
also performed both to confirm the linear stability analysis and to complement the
results by means of 3D and Q2D nonlinear solutions for Ra > Racr.
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Fig. 2. Neutral stability curve for hydrodynamic flow (Ha = 0) showing the marginal
Rayleigh number as a function of the wavenumber.
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Fig. 3. Neutral stability curves for the case of electrically insulating walls c = 0 and
various Hartmann numbers Ha.

Let us consider now magneto-convective flows in an electrically insulating
cavity (c = 0) with A/H = 2. We analyze the influence of the magnetic field strength
(Ha) on the flow stability. In Fig. 3, neutral stability curves are depicted for various
Ha. The curve for the hydrodynamic case (Ha = 0) is shown for comparison. It
can be seen that, as expected [4], the magnetic field stabilizes the flow, i.e. by
increasing Ha the onset of convection occurs at higher values of Ra.

In the following, we fix the Hartmann number to Ha = 200 (1/τ = 100) and we
determine by means of numerical simulations nonlinear solutions when Ra > Racr.
Calculations are performed by using the Q2D model described in Section 2 that
has been implemented in the finite volume code OpenFOAM. The axial length lx
(see Fig. 1) was chosen such that 8 convective cells fit in the computational domain
at Racr.
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Fig. 4. Modified Nusselt number M (7) that quantifies the strength of convective
motion as a function of the Rayleigh number.

Fig. 5. Contours of scaled temperature and electric potential isolines (non-dimensional
distance 0.9) for Q2D MHD flow at Ha = 200 and Ra = 70000.

In order to quantify the intensity of the convective motion, the quantity M (7)
is calculated and plotted as a function of Ra in Fig. 4. The numerically predicted
critical Rayleigh number Racr = Ra(M = 1) agrees very well with the one obtained
by the stability analysis, Racr = 9821.3. By increasing the Rayleigh number, M
becomes larger, i.e. the convective heat transfer intensifies. For sufficiently large
Ra, various solutions coexist characterized by 8, 10 and 12 rolls. An example is
shown in Fig. 5 for the flow at Ra = 70000. Here contours of the temperature T
and isolines of the electric potential, which serve as approximate streamlines, are
depicted on the middle cross-section of the cavity.

In Fig. 6, contours of the temperature and isolines of the electric potential
are compared for three Rayleigh numbers. When the heating becomes stronger,
the motion intensifies, as indicated by a larger number of potential isolines. When
increasing the Rayleigh number, the heat transfer at the upper wall is enhanced by
stronger convective motions and this leads to smaller non-dimensional temperature
in the fluid. In Fig. 7, the vertical component of the velocity is plotted for various
Ra along the axial coordinate on a line at y = 0.5. When approaching the stability
limit (Racr = 9821.3), the velocity profile resembles a harmonic function. By rising
Ra, additional modes appear due to nonlinear interactions leading to more complex
velocity profiles.

308



Magneto convective instabilities driven by internal uniform volumetric heating

Ra = 15000

Ra = 20000

Ra = 40000

Fig. 6. Contours of scaled temperature and electric potential isolines (non-dimensional
distance 0.56) for Q2D MHD flows at Ha = 200 and different Ra.

Ra = 40000

Ra = 20000

Ra = 12500

12

8

4

-4

-8

0

2 4 6 80

-12

Ra = 10000

v

x

Fig. 7. Vertical velocity as a function of the coordinate x for various Ra (Ha = 200).

5. Conclusions. Magneto-convection caused by a uniform volumetric heat
source distributed in a liquid metal layer has been investigated to identify the
influence of an imposed magnetic field on the flow stability and on convective
patterns. A linear stability analysis is performed based on a Q2D model and the
critical Rayleigh number for the onset of convection has been calculated for in-
creasing Hartmann numbers Ha, i.e. for progressively stronger magnetic fields.
The occurrence of convection is delayed when Ha becomes larger. For supercrit-
ical conditions, solutions with different wavenumbers coexist. At the onset of
convection, velocity perturbations occur first as harmonic functions along x. By
increasing Ra, higher modes appear due to nonlinear interactions. Three dimen-
sional simulations indicate the validity of the Q2D model for moderate internal
volumetric heating. When Ra is sufficiently large, deviations from a 2D behavior
are visible along the magnetic field lines.
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