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The next generation dynamo experiment currently under development at Helmholtz-
Zentrum Dresden-Rossendorf (HZDR) will consist of a precessing cylindrical container
filled with liquid sodium. We perform numerical simulations of kinematic dynamo action
applying a velocity field that is obtained from hydrodynamic models of a precession
driven flow. So far, the resulting magnetic field growth rates remain below the dynamo
threshold for magnetic Reynolds numbers up to Rm = 2000.

Introduction. Planetary magnetic fields are generated by the dynamo effect,
the process that provides for a transfer of kinetic energy from a flow of a conducting
fluid into magnetic energy. Usually, it is assumed that these flows are driven by
thermal and/or chemical convection, but other mechanisms are possible as well. In
particular, precessional forcing due to (regular) temporal changes of the orientation
of the Earth’s rotation axis has long been discussed as a complementary power
source for the geodynamo [1, 2].

The basic principle of a fluid flow driven dynamo has been successfully demon-
strated in three different experimental configurations, all of which using a more
or less artificial flow driving [3–5]. Further progress is expected from present
and future dynamo experiments like the Madison plasma dynamo experiment
(MPDX [6]), the liquid metal spherical Couette experiment at the University of
Maryland [7] or the planned precession dynamo experiment that is being designed
in the framework of the liquid sodium facility DRESDYN (DREsden Sodium fa-
cility for DYNamo and thermohydraulic studies [8]).

Precession driven dynamos were found in simulations with a critical magnetic
Reynolds number of the order of 1000 in a sphere [2], cylinder [9], spheroid [10],
ellipsoid [11], and cube [12]. Experimentally, a precessing magnetohydrodynamic
flow has been examined by Gans [13] in a cylinder with the height H = 0.25m,
rotating with ω/2π = 60Hz and precessing with Ω/2π = 0.83Hz (thus yielding a
precession ratio of Γ = Ω/ω ≈ 0.0138). In these experiments, an externally applied
magnetic field was amplified by a factor of ∼ 3, but the magnetic Reynolds number
of that setup remained too small to cross the dynamo threshold.

In order to achieve the required large magnetic Reynolds number indicated by
the above listed numerical studies, the scheduled precession dynamo experiment at
HZDR must represent a greatly enlarged version of this previous setup, making the
construction of the experiment a challenge. The setup will consist of a cylindrical
container with the height H = 2m and radius R = 1m filled with liquid sodium.
The cylinder may rotate with a frequency of up to ω/2π = 10Hz and precess with
up to Ω/2π = 1Hz (see Fig. 1). In contrast to previous dynamo experiments, no
internal blades, propellers or complex systems of guiding tubes will be used for
the optimization of the flow properties.
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Fig. 1. Sketch of the planned precession experiment. The diameter and the height of
the cylindrical container will be 2m. The precession angle can be varied from α = 45○ to
α = 90○ (i.e. ω ⊥Ω).

Fig. 2. Sketch of the water model experiment. The dimensions of the cylinder are
roughly six times smaller than the planned liquid metal experiment.

1. Hydrodynamic flow properties. A small scale water experiment is
in operation in order to investigate the essential operation parameters for the
liquid metal experiment, such as gyroscopic moments and associated load for the
foundation, motor power consumption, typical flow pattern and flow amplitude
(Fig. 2). This experiment is intended to supplement previous studies that were
conducted as part of the French ATER experiment [14–16]. Most probably, the
precession driven flow will be less suitable for dynamo action than the flow in highly
optimized setups used in the dynamo experiments in Riga, Karlsruhe or Cadarache.
In order to narrow suitable parameter regimes that may allow for dynamo action,
flow properties are estimated in dependence on the precession angle α, precession
ratio Γ = Ω/ω and Reynolds number Re = ωR2/ν. These properties will be included
in kinematic simulations of the induction equation which are used to estimate the
ability of different flow fields to provide for dynamo action.
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Fig. 3. Snapshots of the precessing water cylinder at different precession rates. The
container axis is aligned along the horizontal plane and the system precesses around the
vertical axis (α = 90○). Striking feature is the abrupt transition at the critical precession
ratio Γcrit ≈ 0.07 from a laminar state (left panel) to a more disordered chaotic behav-
ior (central panel). For even larger Γ the bulk fluid essentially is rotating around the
precession axis (right panel).

In the water experiment, axial velocity profiles at different radial positions
were measured using Ultrasonic Doppler Velocimetry (UDV). The first results
confirm observations of [14, 15] that precession provides an efficient flow forc-
ing mechanism which yields bulk flow speeds of the order of one fifth to one third
of the rotation speed of the container. In the liquid metal experiment, this will
correspond to flow velocities of up to 20m/s so that a rather vigorous flow is
expected. Based on the rotation speed of the cylinder at ω/2π = 10Hz and the
diffusivity of liquid sodium (η = 0.08m2/s at 400K), we expect magnetic Reynolds
numbers of Rm = ωR2/η ∼ 750, which is rather close to the critical Rm reported
by [9] from simulations of dynamo action in a precessing cylinder.

1.1. Transition to a chaotic state. The most striking feature in the water
experiment is an abrupt transition at a critical precession ratio Γc ≈ 0.07 from a
laminar state to a disordered chaotic behavior (see Fig. 3). The transition goes
along with a sharp increase of the required motor power. The flow properties
change significantly in the chaotic state with the simple m = 1 Kelvin mode being
suppressed, so that we expect a different regime for the dynamo as well.

1.2. Comparison with numerical simulations. For small Reynolds numbers
the measurements are compared with simulations applying the code SEMTEX [17].
The code uses a spectral element method and a Fourier decomposition for the
numerical solution of the Navier–Stokes equation which in the precessing frame
reads:

∂

∂t
u + (u ⋅ ∇)u + 2(ω +Ω) × u = ν∇2u +∇Φ, (1)

with the boundary condition u = ω × r. In Eq. (1), u denotes the flow field, ω
the rotation of the container, Ω the precession, ν the viscosity, and Φ a reduced
pressure that includes centrifugal forces. Note that Eq. (1) describes the precession
problem in the so-called turntable frame, in which the observer co-rotates with the
precession with view to the rotating cylinder.

A comparison between numerical solutions and experimental measurements
is shown in Fig. 4. For a moderate precession ratio (Γ = 0.06), the pattern and
the amplitude of the velocity field are very similar (left column of Fig. 4). The
agreement is worse for a larger precession ratio (Γ = 0.10), where we observe a larger
flow amplitude in the simulations compared to the experiment (right column).

The main reason for these deviations is the transition to the chaotic state in
the experiment (around Γ ≈ 0.07), in which the fundamental m = 1 Kelvin mode is
suppressed. Some evidence for such a transition in the simulations occurs only at
a significantly larger Γ ≈ 0.15. This is indicated in Fig. 5, where the rotation axis
of the bulk flow has changed its orientation from roughly parallel to the symmetry
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Fig. 4. Comparison of the axial velocity at r = 0.74 from hydrodynamic simulations
(top row) and experimental measurements (bottom row). Left: Γ = 0.06, right: Γ = 0.10.
The experimental data are measured at a rotation rate of ω/2π = 0.2Hz corresponding
to Re ∼ 33000.

Fig. 5. Streamlines from simulations with weak precessional forcing (left, Γ = 0.03)
and strong precessional forcing (right, Γ = 0.15). Note the bulk flow rotating around the
precession axis in the latter case.

axis of the container (left panel) to a perpendicular direction (aligned with the
precession axis, right panel).

The change of the orientation of the fluid axis is much less obvious in the
simulation than in the water experiment which may be due to the much larger Re
in the experiment.

2. Kinematic simulations of the induction equation. In the following,
we concentrate on a more laminar regime with the main fluid rotation axis oriented
(more or less) parallel to the container symmetry axis. We use different three-
dimensional velocity fields as an input for a kinematic solver for the magnetic
induction equation which reads

∂

∂t
B = ∇× (u ×B − η∇×B). (2)

In Eq. (2), B denotes the magnetic flux density, u is the velocity field, and η
is the magnetic diffusivity. The numerical solution of Eq. (2) is computed using
the numerical scheme presented in [18]. The resulting growth rates γ allow a quick
estimation whether a given flow field is capable of driving a dynamo. The approach
works well in the vicinity of the dynamo onset, but does not allow a consideration
of non-linear effects like the magnetic back-reaction on the flow.
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We use three different patterns for the velocity field. The simplest case (case
I) makes use of analytic expressions that describe the fundamental inertial wave
with the azimuthal wavenumber m = 1 (Kelvin mode). These solutions result from
the linear in-viscid approximation of Eq. (1) and neglect the boundary layer flow
as well as any non-linear interactions. The components of u are explicitly given
by [19, 20]

ur = −
1

1 − ω2
n

[dJ1(2λnr)
dr

+ωn
1

r
J1(2λnr)]cos[kπ(

z

H
+ 1
2
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uφ = −
1
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[ωn
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kπ
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z

H
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2
)] sin(φ + t).

In Eq. (4), J1 denotes the cylindrical Bessel function of first kind, H is the
aspect ratio (height to radius), k is the axial wavenumber, and t is the time scaled
by the forcing frequency ω. λn are the radial wavenumbers which are computed
from the dispersion relation:

λ
dJ1(λ)
dr

+ ωJ1(λ) = 0, (4)

(which enforces the radial boundary conditions) and the eigenfrequencies ωn result
from the requirements imposed by the axial boundary conditions with an integer
axial wavenumber k, which leads to

ω2
n = 1 + (

λnH

kπ
)
2

, (5)

with λn being the nth root of Eq. (4). More elaborate expressions for the linear
solutions of Eq. (1) that include the Ekman pumping and boundary layers are
specified in [21]. However, in this study, we are interested only in the critical
magnetic Reynolds number required for the simplest possible flow pattern that
can be excited by a precessional forcing. Hence, we normalize Eq. (4) so that
uφ(r = R) = 1 and vary the magnetic diffusivity η in order to change the magnetic
Reynolds number defined by Rm = ωR2/η. In a second step, we might judge if this
critical value corresponds to some reasonable flow amplitude. Any further effects
resulting from boundary layers or higher azimuthal modes (triads) are ignored.

In order to estimate the impact of viscous boundary layers and non-linear
interactions, we apply flow fields resulting from the numerical simulations briefly
described in section 2. We used data obtained from runs with the precession ratio
Γ = 0.1 and Re = 1500 (case II) and with Re = 6500 (case III), respectively.

For Re = 1500, the flow is more or less stationary with a rather simple pattern
that is very close to the analytic solutions for the fundamental m = 1 Kelvin mode.
Fig. (6) shows the temporal behavior of the resulting magnetic energy density

Emag =
1

2µ0
∫ B2dV

(top panel in Fig. 6). We do not find any growing solutions up to the magnetic
Reynolds number Rm = 2000, and from the behavior of the corresponding growth
rates it seems unlikely that a crossing of the dynamo threshold occurs within a
reasonable Rm (bottom panel in Fig. 6).
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Fig. 6. Top: temporal behavior of the magnetic energy for a velocity field obtained at
Re = 1500 and Γ = 0.10. Bottom: corresponding growth rates of the fundamental dynamo
eigenmode versus Rm.

Fig. 7. Snapshot of the flow components at Re = 6500. Note that the maximum flow
is essentially concentrated close to the boundaries.

The dark grey curve in the bottom panel of Fig. 6 shows the growth rates
using the analytic expressions for the Kelvin modes given in Eq. (4). The behavior
is quite similar to the growth rates obtained from the simulations applying the flow
field from the hydrodynamic simulations. Preliminary simulations with even larger
Rm (not shown) indicate that indeed no crossing of the dynamo threshold occurs
up to Rm = 5000.

As a next step, we used a flow field obtained from hydrodynamic simulations
at a larger Reynolds number in order to capture the induction effects from a more
time-dependent velocity field. We used a velocity field obtained at Re = 6500. At
this value, the flow is clearly time-dependent but still dominated by the m = 1
mode (Fig. 7).
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Fig. 8. Top: temporal behavior of the magnetic field amplitude for a velocity field
obtained at Re = 6500. Bottom: corresponding growth rates of the fundamental dynamo
eigenmode versus Rm.

Again, we do not find any growing solutions for the magnetic field, however,
the behavior of the growth rates indicates a critical magnetic Reynolds number in
the range of Rm = 3000 . . .4000 (Fig. 8), which, unfortunately, would be far out of
reach in the forthcoming dynamo experiment.

3. Conclusion. So far the kinematic simulations performed within this study
did not show dynamo action. Reasons for this might be the simplistic structure of
the flow which is close to the fundamental Kelvin mode in the low Re regime or
restricted to regions close to the boundaries for larger Re (but still dominated by
m = 1). The behavior of the growth rates confirms the results from [22], where it
was shown that inertial waves could not drive a dynamo. However, our simulations
were restricted to parameter regimes with a quite low Reynolds number, whereas
the experiment will be characterized by Re ∼ O(108), and we expect an emergence
of more complex flow structures for more realistic parameters.

Two promising candidates are already known, from which we expect an im-
provement of the ability of the flow to drive a dynamo. The first are the so-called
triads consisting of the forced fundamental Kelvin mode and two free resonant in-
ertial modes with a larger azimuthal wavenumber. Such triadic resonances have re-
peatedly been observed in experiments and simulations of precessing flows [23, 24].
In a spherical geometry, a subclass of these modes have a close similarity to the
columnar convection rolls that are responsible for dynamo action in geodynamo
models, and there is little reason to believe that this should not be the case with
a precession driven flow field.
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Fig. 9. Idealized model for the cyclones observed in the ATER experiment [16].

The second possibility relies on observations of cyclones in the French preces-
sion experiment ATER [16]. In that experiment, large scale vortex-like structures
emerge for intermediate precession ratios. These vortices are oriented along the
rotation axis of the cylindrical container, and, depending on the parameter regime,
their number varies between one and four (Fig. 9). The vortices are cyclonic, i.e.
their sense of rotation is determined by the rotation orientation of the cylindrical
container. We suspect that these vortices provide a significant amount of helicity,
but so far, the axial dependence of their contribution and their interaction with
the fundamental m = 1 mode is unknown. Furthermore, cyclones were neither ob-
served in the HZDR experiment (so far, no appropriate velocity measurements in
a horizontal plane are available) nor in any simulations which probably must run
at a much higher Reynolds number in order to reveal these modes.
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