
MAGNETOHYDRODYNAMICS Vol. 51 (2015), No. 2, pp. 285–292

DYNAMO EQUATIONS
WITH RANDOM COEFFICIENTS

E.A.Mikhailov1, I.I.Modyaev2

1 Chair of Mathematics, Faculty of Physics, Moscow State University,
Leninskie Gory GSP-1, Moscow 119991, Russia

2Chair of Probability Theory, Faculty of Mechanics and Mathematics,
Moscow State University, Leninskie Gory GSP-2, Moscow 119991, Russia

Galactic dynamo is caused by two effects. One of them is caused by differential rotation
and the other is determined by turbulent motions. In some galaxies there is a strong
star formation or other processes which are connected with local regions of hot gas.
Turbulent motions in such zones differ from the those in warm gas. It is useful to model
such processes with dynamo equations that contain random coefficients. The coefficient
of alpha-effect can take two different values. The first one is related to warm gas and
it is the same as the coefficient for most of the galaxies studied before. The second one
characterizes hot gas, which can be connected with the star formation or other processes
with high velocities and large portions of energy. This coefficient is random and changes
with a time, which is much less than typical times of galactic dynamo. The probability
to obtain the second value of the coefficient is determined by the intensity of the star
formation. We have obtained some critical values of probability, for which dynamo
cannot support the magnetic field growth. Also we have calculated average velocities of
the magnetic field growth and its dispersion. For calculations, we used both numerical
and asymptotical methods.

Introduction. It is believed that the generation of magnetic fields of galaxies
and other astrophysical objects is described by the so-called dynamo theory [1].
The dynamo mechanism is usually based on two effects: differential rotation and
the alpha-effect. Differential rotation is determined by non-solid body rotation of
galaxies: the linear velocity of their rotation is constant at large distances from the
galaxy center [2]. The alpha-effect describes turbulent motions of the interstellar
medium. Each of them describes only the magnetic field decay, but their joint
action can cause its exponential growth [3]. The magnetic field generation is
a threshold process: if the so-called dynamo number (that includes the typical
velocity of the interstellar gas, half-thickness of the galaxy disc and the angular
velocity of the galaxy rotation) is larger than some value, the field can be generated,
else it decays [4].

The alpha-effect and the differential rotation can be described by dimension-
less coefficients Rα and Rω. These coefficients usually include some averaged
characteristics of the interstellar medium, such as turbulent velocities, viscosity,
etc. [4]. For “calm” galaxies, where there are no intensive processes and the concen-
tration of ionized hydrogen is of an order of 10−1 [5], these parameters describe the
magnetic field growth well. But if there are some intensive processes in the galaxy,
such as star formation or supernovae explosions (which create regions of ionized
hydrogen), the turbulent motions including the alpha-effect will be changed.

A possible solution of this problem is a model with a random coefficient of the
alpha-effect [6]. Basic aspects of dynamo with fluctuating α have been described
by Proctor [7]. Moreover, such model for geomagnetic dynamo was also considered
by Stefani and Gerbeth [8]. As for galactic dynamos with random coefficients, the
model with local approach was described by Sur and Subramanian [9]. Although,
some details are still not clear. For example, it is important to take into account
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that the alpha-effect can differ for various parts of the galaxy. Then, it would be
important to make some asymptotic estimates of the magnetic field growth that
are not connected with the numerical solution with non-ideal computer generators
of random numbers.

We consider the alpha-effect parameter as a random process that takes two
different values. The first value is connected with warmed atomic hydrogen, and
the second one describes turbulent motions in regions with a highly ionized hot
gas. The second option occurs with a probability p, which is determined by the
ratio between hot and warm gas components.

We study the magnetic field of galaxies using the so-called no-z model. It
is adopted such that the magnetic field disc is quite thin, so we can change z-
derivatives of the magnetic field components by algebraic expressions [10]. One
of the coefficients in this model is random. We use different types of equations.
First, we use a linear model that contains a system of two ordinary equations. For
this model, we obtain some numerical results. The main feature of them is the
intermittency: higher momenta of the solution grow faster than lower ones [11].
Then, we obtain some asymptotic estimates of the magnetic field growth, using
the invariant measure technique [12]. The asymptotic results are quite close to the
numerical ones.

The magnetic field generation is connected with the transition of the kinetic
energy of turbulent motions to the magnetic field energy, and the magnetic field
growth is limited by some equipartition value. So, we also use a nonlinear type
of the system of dynamo equations. The magnetic field growth for small values is
quite similar to the linear case, but after the growth saturation the magnetic field
does not stabilize. It has some oscillations near the equipartition value.

Then, we should take into account the dissipation of the magnetic field, so we
also calculate the magnetic field using a model with partial differential equations.

1. Governing equations. To describe the magnetic field of the galaxy, we
use equations of the no-z model [13]:
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where Br and Bφ are the magnetic field components in the disc plane, Rα is the
dimensionless amplitude of the alpha-effect, Rω is the dimensionless amplitude of
differential rotation, λ = h/R is the disc aspect ratio, where h is the half-thickness
of the galaxy disc, R is its radius. The distances are measured in galactic radii
(0 < r < 1), and the time is measured in h2/η, where η is the coefficient of turbulent
diffusivity. A conventional estimate is Rα ∼ 1, Rω ∼ 10.

The magnetic field growth is determined by the transition of the kinetic energy
of interstellar motions to the magnetic field energy. So, the magnetic field cannot
grow more than the equipartition value B∗ that is described by Eq. [4]

B∗2

8π
= ρv2

2
,

where ρ is the density of the interstellar gas and v is the velocity of turbulent
motions. So the equipartition value is B∗ = v

√
4πρ.

Taking into account the saturation of the magnetic field growth, we can change
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the coefficient Rα by a nonlinear modification [14]

Rα =
Rα0

1 + (B2
r +B2

φ) /B∗2
.

If we assume B∗ = 1 (this can be done by taking special dimensionless units
for the magnetic field), Eq. (1) turns out:
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We assume that Rα is described by a random law:

Rα =
⎧⎪⎪⎨⎪⎪⎩

0.1 with probability p;

1 with probability (1 − p).
(3)

We assume that Rα is a piece constant function: for small time intervals
∆t ∼ 10−2 it is constant, and after that it renews according to the random law.
Sometimes we took some continuous distribution for Rα with thin peaks at 0.1
and 10. For the partial differential equations, we also assume that for every ring
n∆r < r < (n + 1)∆r the coefficient Rα has a different value [15].

Of course, some effects that take place in galaxies with rapid processes must
be described by more complicated parameterizations, but the main features can
be described even by our quite simple model.

2. Local approach. At first we present the results for the simplest case of
an infinitely thin disc and neglect the losses due to diffusion in the disc plane.
Then the dynamo equations will be the following:

dBr
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= −RαBφ −

π2

4
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= −RωBr −

π2

4
Bφ.

(4)

If the parameters are deterministic, the solution will describe the exponential

growth: Br,φ ∼ exp(γt), where γ = −π2

4
±
√
D. D = RαRω is the so-called dynamo

number. If D ≳ 7, the magnetic field will grow, else it will decay. Dcr ≈ 7 is the
critical value of the dynamo number that describes the character of the magnetic
field evolution.

If we introduce a vector B = (Br,Bφ), the dynamo equations (4) can be
rewritten in the matrix form:

d
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,
)

which can be solved as

B(n∆t) = B((n − 1)∆t) exp{−π
2

4
∆t}Cn,
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where Cn is the transition matrix:
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So, we can introduce a matrix [12, 16]:

C(n) = C1C2...Cn,

and the magnetic field for each time moment t = n∆t will be described by the
formula:

B(n∆t) = exp{−π
2

4
∆t}B(0)C(n)

.
Let

tan θ =
Bφ

Br

. The angle θ at each time t = n∆t has a distribution πn(θ) which can be described
by the so-called transition probability density p(θ,χ):

πn+1(θ) = ∫
π/2

−π/2
p(θ,χ)πn(χ)dχ.

For n→∞, the distribution function has a limit [12]:

πn(θ)→ π∞(θ).

Then, the magnetic field growth rate is

γ = 1

∆t
< ln ∥wCn∥ > −

π2

4
,

where w = (cos θ, sin θ) and θ has a limit distribution π∞(θ).
First of all, we investigate the dynamo equations numerically for various values

of α (Fig. 1). The magnetic field grows with p < 0.43 and decays with p > 0.43.
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Fig. 1. Magnetic field growth for various p (linear local model). Rω = 10, Rα is
described by Eq. (3). The solid line shows p = 0.30, the long-dashed one p = 0.40, the
short-dashed one p = 0.50.
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Table 1. Velocities of the exponential growth for different p with the local approach
Eq. (4). Rω = 10, Rα is described by Eq. (3).

p γB γ<B> γ<B2>1/2 γ<B3>1/3 γ<B4>1/4 γtheor
0.30 0.224 0.235 0.238 0.241 0.244 0.250
0.40 0.056 0.062 0.067 0.070 0.074 0.065
0.50 –0.130 –0.122 –0.117 –0.113 –0.108 –0.116

Table 2. Velocities of the exponential growth for different p in the r-dependent system
(6). Rω = 10, Rα is described by Eq. (3).

p γB γ<B> γ<B2>1/2 γ<B3>1/3 γ<B4>1/4

0.30 0.221 0.229 0.230 0.232 0.233
0.40 0.050 0.058 0.059 0.061 0.062
0.50 –0.136 –0.127 –0.125 –0.123 –0.122

The typical growth rates of various statistical momenta of B =
√
B2

r +B2
φ are

listed in Table 1. The higher momenta grow faster than the lower ones. It is
called the intermittency effect. Then, we find the limiting probability density π
(Fig. 2) and calculate the magnetic field growth rate analytically using this density.
Numerical and analytical estimates are compared in Table 1.

We use afterward a nonlinear modification of system (4):
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1 +B2
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4
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= −RωBr −

π2

4
Bφ.

(5)

The results are illustrated in Fig. 3. It is seen that the field growth for small
values of B ≪ 1 is quite similar to the linear case (4). But after the growth
saturates, the magnetic field does not stabilize as for the deterministic case (solid
line). It oscillates near the equipartition value.
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Fig. 2. The probability density for different n: solid line n = 20, long-dashed line
n = 50, short-dashed line n = 100. Rω = 10, Rα is described by Eq. (3).
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Fig. 3. Magnetic field growth for various p (non-linear local model). Rω = 10, Rα is
described by Eq. (3). The solid line shows p = 0.00, the long-dashed line p = 0.20, the
short-dashed line p = 0.40, the dot-dashed line p = 0.60.
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Fig. 4. The magnetic field at t = 100∆t for different p (linear r-dependent model). The
short-dashed line p = 0.00, the solid line p = 0.30, the long-dashed line p = 0.60. Rω = 10,
Rα is described by Eq. (3).

3. Partial differential equations. To take into account some local effects,
we also used a model with r-dependence [14]:
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A typical dependence of B on r is shown in Fig. 4. The time dependence is
quite similar to the local approach. The velocities of magnetic field growth are
listed in Table 2. It can be seen that they are a bit smaller, which can be explained
by the energy dissipation caused by a Laplace operator.

4. Conclusions. We have calculated the velocities of the magnetic field
growth in the galaxy dynamo model with random coefficients both numerically
and using the invariant measure technique. It is shown that there is an intermit-
tency effect in this model: the higher momenta of the field grow faster than the
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lower ones [11]. The magnetic field evolution is qualitatively similar to the local
model and to the r-dependent one. Some differences are assosiated with the field
dissipation caused by the Laplace operator.
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