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The transient amplification of optimal linear perturbations in Hartmann channel flow is
studied at low and moderate Hartmann numbers. These perturbations are streamwise-
independent vortices. They develop into streaks, which are important for subcritical
transition to turbulence. The influence of the opposite channel wall is examined by com-
paring antisymmetric and symmetric perturbations. Differences in energy amplification
between these two types of perturbations decrease rapidly with the Hartmann number.
Moreover, the energy amplification in Hartmann flow is close to that in an asymptotic
suction boundary layer, i.e. the magnetic damping of perturbations has only a weak
effect on transient growth.

1. Introduction. When an incompressible and electrically conducting liquid
flows between two unbounded parallel plates exposed to a uniform and constant
magnetic field imposed perpendicular to the walls, the profile of the mean flow
becomes flat in the core due to the interaction of the induced electric current with
the imposed magnetic field. As a consequence, two boundary layers develop at
the walls. They are named after Julius Hartmann [1], who first investigated MHD
channel flow in 1937. The thickness of these layers is inversely proportional to
the intensity of the magnetic field B, which is characterized by a non-dimensional
parameter called the Hartmann number Ha. When Ha is sufficiently large, the
Hartmann layers at the top and bottom walls do not overlap and can be considered
as independent of each other. An isolated Hartmann layer could become unstable
when the local Reynolds number R, which is defined with the Hartmann layer
thicknessas length scale, exceeds some threshold.

The stability of Hartmann layers has been explored experimentally in lam-
inarization studies to determine at which values of Rc turbulent flow becomes
laminar. Early works showed that re-laminarization might occur in the range
150 < Rc < 250. A recent experiment [2] found Rc ∼ 380 from measurements of the
friction coefficient as a function of R. The same Rc was observed for the inverse
process of transition from laminar flow to turbulence.

The stability of Hartmann layers was first studied theoretically by normal
mode analysis. It turned out that exponential growth of infinitesimal perturba-
tions appears at values of R two orders of magnitude higher than Rc in exper-
iments [3]. This is similar to other shear flows, e.g., pipe flow, where classical
normal mode stability analysis fails to predict the transition. Recent develop-
ments in linear stability theory have revealed that the transient amplification of
non-modal perturbations may play a significant role in the so-called subcritical
transition of shear flows [4]. For a plane channel flow, streamwise vortices provide
the strongest amplification. Such streamwise vortices interact with the mean flow
and evolve into streamwise streaks, which are viewed as a key element in the tran-
sition scenario and in the dynamic processes sustaining turbulence. However, as

225



S.Dong, D.Krasnov, T.Boeck

the subcritical transition is an intrinsically nonlinear process, the investigation of
linear effects alone is insufficient to obtain critical parameters. In a non-magnetic
shear flow, the transition Reynolds number Rt depends on the types of perturba-
tions that are imposed on the laminar flow (transition scenario) as well as on their
amplitudes, and direct numerical simulations (DNS) are required to determine,
e.g., the dependence of Rt on the perturbation energy. For given perturbation
energies, one may then estimate minimal values of R for transition from the values
of Rt corresponding to the different scenarios. In plane channel flow, several sce-
narios have been explored, e.g., the interaction of oblique modes or the secondary
instabilities of streaks [5].

In the Hartmann flow, the transient growth has been studied by Gerard–
Varet [6] for an isolated Hartmann layer, where the opposite channel wall is ne-
glected. The amplification of perturbations then depends only on R. Another
study by Airiau and Castets [7] considered transient linear growth in the Hart-
mann flow with the full induction equation and explored the influence of Ha and
the magnetic Prandtl number.

Krasnov et al. [8] examined a two-step transition scenario for the Hart-
mann flow by DNS. It consists of (i) the large transient growth of initially small,
streamwise-independent disturbances that leads to a modulation of the laminar
Hartmann flow, and (ii) the linear instability of the modulated flow with respect
to some three-dimensional secondary perturbations. Transition could be triggered
when both R and the amplitude of primary and secondary perturbations were
sufficiently large. In this way, Rc was found to be between 350 and 400, which is
already very close to the experimental results.

Further work by Zienicke and Krasnov [9] focused on the dependence of Rc

on Ha in this scenario, i.e. the interaction between the Hartmann layers at both
channel walls was taken into account. However, the effect of the channel walls on
the primary streamwise-independent perturbations was not explored. This effect
can be significant when the Hartmann layers are not small compared with the
channel height. One purpose of the present paper is, therefore, to examine the
linear optimal growth of streamwise-independent perturbations at low and mod-
erate Hartmann numbers. In addition, the influence of the magnetic field on the
amplification is investigated. The present study is thereby clearly limited to one
aspect of the streak instability transition scenario, namely, the linear mechanism
leading to the formation of streaks. The local transition Reynolds numbers R and
the corresponding perturbation energies can only be determined by DNS using
the linear perturbations (e.g., data from this study) as initial conditions of finite
energy. The effects of walls and magnetic field on certain types of secondary per-
turbations of finite-amplitude streaks in the Hartmann flow will be examined in
future work.

2. Governing equations. The flow of an incompressible electrically con-
ducting fluid between two unbounded plates is considered in the inductionless
approximation. The flow is driven by a constant mass flux and subjected to a
constant and uniform magnetic field imposed perpendicularly to the walls. The
non-dimensional governing equations and boundary conditions are

∂u

∂t
+ (u ⋅ ∇)u = −∇p + 1

R
∇2u + Ha2

R
(−∇ϕ × ez + (u × ez) × ez) , (1)

∇ ⋅ u = 0, (2)

∇2ϕ = ∇ ⋅ (u × ez) , (3)

u = v = w = ∂ϕ

∂z
= 0 at z = ±1, periodicity in x and y directions. (4)
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Here x, y, z denote the streamwise, spanwise and wall normal directions, respec-
tively, and ez ≡ (0,0,1). The center line velocity U of the laminar Hartmann
flow, the half width of the channel L, and the imposed magnetic field strength
B have been taken for non-dimensionlization. The non-dimensional parameters
in the equations above are the Reynolds number R ≡ UL/ν and the Hartmann

number Ha = L/δ, where δ =
√
(ρν/σB2) denotes the Hartmann layer thickness.

The local Reynolds number is Rl = Uδ/ν = R/Ha.
For the analysis of primary perturbations, the governing equations (1)–(3) are

linearized about the laminar Hartmann flow

U(z) = cosh(Ha) − cosh(Ha z)
cosh(Ha) − 1

U ex. (5)

The primary linear perturbations take the form

up(x, y, z, t) =
1

2
[û(z, t) exp(iαx + iβy) + c.c.] , (6)

where ‘c.c.’ denotes the complex conjugate. The stream- and spanwise wave
numbers are denoted α and β. The growth of the perturbations is evaluated by the
kinetic perturbation energy. An energy norm is defined as E(t) = (1/2) ∫ ∣up∣2dV ,
thus the ratio of E(t) and initial perturbation energy E(0) is the perturbation
energy amplification factor G(t) = E(t)/E(0).

Using a Lagrangian formalism, the maximum value Gmax(R,Ha, τ, α, β) for
the given parameters R, Ha, the wavenumbers α, β and a given time horizon τ is
determined via an optimization with two constraints: (i) the perturbation energy
E(0) = 1; (ii) the perturbation satisfies the linearized governing equations as well as
the boundary conditions in the time interval 0 < t < τ . The Lagrangian multipliers,
the so-called adjoint fields ũ(z, t), are introduced to enforce these constraints [4].
The optimal perturbation and amplification at the final time τ can be obtained
by an iterative scheme, in which forward integration of the linearized governing
equation is followed by backward integration of the adjoint equations, i.e.

û(z,0) directÐ→ û(z, τ)
↑ ↓

ũ(z,0) adjoint←Ð ũ(z, τ).
(7)

The relations between the fields at initial and final times are described, e.g.,
in [10]. The iterations can be stopped when the energy amplification factor G
tends to a stationary value. We note that the pressure and electric potential as
well as their adjoints are functions of the velocity fields and have no independent
dynamics. The iterative method (7) for computing the optimal perturbations and
the corresponding code are described in [11].

3. Influence of the opposite channel wall. Optimal linear growth in the
Poiseuille flow without magnetic field has been analyzed by Butler and Farrell [12].
The largest energy amplifications are obtained for α=0 at sufficiently long times τ .
Transient energy growth is then caused by a redistribution of streamwise velocity
by streamwise-independent vortices (lift-up mechanism). The Poiseuille flow sup-
ports two classes of such perturbations with different vertical structures. With the
increasing width of the plateau between the Hartmann layers, these perturbations
should become localized at the walls. In this case, one should recover the results
for optimal linear growth in an isolated Hartmann layer by Gerard–Varet [6].
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3.1. Antisymmetric and symmetric perturbations. In the hydrodynamic
case, the vertical perturbation structure of purely streamwise-independent per-
turbations (α=0) can be either antisymmetric or symmetric in z for the initial
wall-normal velocity profile ŵ(z,0), which results in a symmetric or an antisym-
metric perturbation (with respect to the streamwise perturbation velocity). The
quantity ŵ will be assumed as real. The corresponding perturbation û of the
streamwise velocity is complex.

As Butler and Farrell [12], we consider a fixed R = 5000. In addition, we vary
the Hartmann number in order to see the localization of the perturbations and to
determine when they become identical. This is possible because in the numerical
method the antisymmetric or symmetric structure of perturbations is preserved
from one iteration to the next.

When the Hartmann number is small, the basic velocity profile is close to the
Poiseuille flow, and the two perturbations types should resemble those for Ha = 0.
This is shown in Fig. 1 for Ha = 2 and R = 5000 for a minimal domain with a
single spanwise wavelength. The top row shows the initial velocity distribution
in a plane x = const. For the symmetric perturbations, one finds stacked pairs
of counter-rotating vortices along the vertical direction and no flow across the
mid-plane. For the antisymmetric perturbations, the vortices extend over the
full height of the channel with weak co-rotating vortices near the middle. The
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Fig. 1. Results for R = 5000 and Ha = 2: perturbation velocity distributions of a
globally optimal antisymmetric perturbation (a, c) and a symmetric perturbation (b, d)
in the (y, z)-plane. Top row (a, b) – the velocity distribution at the initial time; bottom
row (c, d) – streamwise velocity contours at the time τ of maximum amplification. Dashed
lines indicate negative values.
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Fig. 2. Maximum of the perturbation energy amplification Gmax (a) and the corre-
sponding optimal spanwise wavenumber βopt (b) as a function of the time horizon τ at
R = 5000 and Ha = 2.
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Fig. 3. Results for R = 5000 and Ha = 10: (a,b) Distribution of the streamwise
perturbation velocity at the optimal time τ for antisymmetric (a) and symmetric (b)
perturbations. (c) Maximum of the energy amplification Gmax as a function of the time
horizon τ .

resulting isolines of the streamwise velocity perturbation in Fig. 1 are symmetric
and antisymmetric with respect to the mid-plane.

Fig. 2 shows that the maximum energy amplification Gmax(τ), i.e. the am-
plification factor G optimized with respect to β, is higher for the antisymmetric
perturbations. The corresponding values βopt(τ) providing Gmax(τ) are lower.
In both cases, the amplification is lower than at Ha = 0, where Gmax ≈ 4900
(βopt ≈ 2.0) for antisymmetric perturbations and Gmax ≈ 2800 (βopt ≈ 2.6) for
symmetric perturbations. However, both the optimal times and the wave numbers
hardly differ from Ha = 0.

The separation of the Hartmann layers at higher Ha eliminates the differences
between symmetric and antisymmetric perturbations. This can be seen in Fig. 3
for Ha = 10. The streamwise velocity perturbations appear to have a very similar
shape and show almost identical values Gmax at essentially the same optimal time
τopt and wavenumber βopt. The energy amplification is also significantly reduced
and occurs at a later time and for a higher wavenumber than at Ha = 2 (Fig. 3c).
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Fig. 4. Global maximum of the perturbation energy amplification Gmax (a) and the
corresponding optimal spanwise wavenumber βopt (b) for different Ha at R = 5000.
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ŵ

z

(b)

ŵ
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Fig. 5. Distribution of the vertical velocity ŵ at R = 5000 and Ha = 7 after N = 5 (a)
and N = 1155 (b) iterations. The wavenumber βopt is that of the largest amplification of
antisymmetric perturbations.

3.2. Convergence to the limit of an isolated Hartmann layer. A detailed
exploration of the interval 2 < Ha < 10 was performed at R = 5000 to see how the
different perturbation types approach one another. Fig. 4a shows how the maxi-
mum energy amplification of antisymmetric and symmetric optimal perturbations
changes with Ha. The differences become insignificant for Ha > 7. The corre-
sponding wavenumbers βopt in Fig. 4b are then also fairly close. Moreover, they
become proportional to Ha for Ha > 7, which also inidicates that the perturbations
become localized within the Hartmann layers. Nevertheless, the effect of the oppo-
site wall is not completely absent even then, i.e. the symmetric and antisymmetric
perturbations are not exactly identical. The antisymmetric perturbations are still
growing faster, but the differences appear to become exponentially small.

A direct computation of such small differences in amplification between the
perturbations is hardly possible with our iterative numerical method. Instead,
we use an indirect approach. When a general initial perturbation that is neither
symmetric or antisymmetric is used in the iterative method, it will eventually con-
verge to the antisymmetric perturbation with the larger amplification. However,
the number of iterations will increase as the difference in amplification between
the symmetric and antisymmetric perturbations decreases.

Fig. 5 shows two iterates of the vertical velocity perturbation ŵ to illustrate
the convergence from a random initial distribution. After N = 5 iterations the
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Fig. 6. R = 5000: (a) Convergence of D with the iteration number N at different Ha.
(b) The decay rate coefficient λ as a function of Ha. In each case, the wavenumber βopt

is that of the largest amplification of antisymmetric perturbations.

profile is not symmetric about z = 0, but after N = 1155 it has essentially converged
to a symmetric one, i.e. the antisymmetric perturbation is dominant.

To characterize the asymmetry of the ŵ profile, a parameter D can be defined
as the difference between the left peak and the right peak in ŵ (see Fig. 5a), i.e.

D = ∣max
z>0
(ŵ(z)) −max

z<0
(ŵ(z))∣ . (8)

Its value decreases with the number of iterations N as the symmetric profile
is approached. Fig. 6a shows that the convergence is exponential, i.e.

D(N) ∼ exp(−λN). (9)

The decay rate λ depends on the Hartmann number. Fig. 6b shows that it
decreases rapidly with Ha. From Ha > 6, there appears to be an approximately
exponential dependence, i.e. λ ∼ exp(−CHa).

4. Magnetic damping effect on perturbations. In the laminar Hart-
mann flow, the flat velocity distribution in the bulk is caused by the balance
between the induced Lorentz force density and the pressure gradient, and the re-
sulting Hartmann layers are due to a balance of viscous and Lorentz forces. The
ratio of Lorentz forces to inertia in the Hartmann layers is described by the mag-
netic interaction parameter Nδ based on the Hartmann layer width. According to
Alboussiere and Lingwood [13], Nδ ∼ Ha/R, which is small when the Hartmann
layer becomes turbulent. For this reason, these authors have argued that the
turbulence in the Hartmann layer is essentially unaffected by the Lorentz forces,
i.e. the Lorentz force is important only for the turbulent mean velocity, but not
for the fluctuations. By the same argument, the Lorentz force should only have a
weak effect on the optimal perturbations in the Hartmann flow. For a quantitative
comparison, we shall, therefore, compute the evolution of optimal perturbations
in the Hartmann flow with and without Lorentz forces. The results can also be
compared with an asymptotic suction boundary layer (ASBL), which has the same
mean velocity distribution as an isolated Hartmann layer, i.e.

U(z) = U (1 − exp(−z′/δS)) , (10)

where the boundary layer thickness δS = ν/wS depends on the suction velocity wS

and z′ denotes the distance from the wall. Optimal growth in this flow has been
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Fig. 7. Results at R = 1000 and Ha = 40: (a) The maximum energy amplification Gmax

and (b) the optimal spanwise wavenumber βopt as a function of the time horizon τ for a
full Hartmann flow (HA) and a Hartmann flow without magnetic damping (ASBL).

computed by Fransson and Corbett [14]. Incidentally, these authors found that
the primary perturbations of the ASBL were not much affected by the suction,
i.e. the amplification is largely the same when the vertical velocity at the wall
is set to zero. The ASBL without suction velocity in the perturbation problem
is then equivalent to an isolated Hartmann layer without magnetic field in the
perturbation problem. For this reason, we loosely refer to the results at Ha = 0 by
“ASBL” in what follows. In the ASBL, one can define a local Reynolds number
based on the boundary layer thickness, i.e. R = UδS/ν. It is equivalent to the local
Reynolds number R for the Hartmann layer.

To compare the Hartmann flow (HA) and the ASBL, we have computed the
optimal linear growth for streamwise-independent perturbations (α = 0) at dif-
ferent Ha and R. The results for the maximum amplification G as a function of
the time horizon τ and the corresponding wavenumber β, at which G is attained,
are shown in Fig. 7 for Ha = 40 and R=1000. With small τ , the two cases are
hardly different. However, for the ASBL there is a stronger amplification reached
at a later time and a lower value of β since there is no Joule dissipation in this
case. Time is shown as τHa, i.e. it is measured in convective units based on the
boundary layer width. The values of β are high because β is represented with L
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Table 1. Values of the prefactors in Eq. (11) computed with the data for R = 1000 and
Ha = 40. Data for the actual ASBL (with suction) and an isolated Hartmann layer are
listed for comparison.

CG Cτ Cβ

full Hartmann flow 6.1 × 10−4 0.62 0.78
ASBL 9.9 × 10−4 1.33 0.50

actual ASBL [14] 9.9 × 10−4 1.15 0.53
Hartmann layer [6] 5.65 × 10−4 n/a 0.9

as the unit of length.
We now consider the maximum energy amplification Gmax optimized with

respect to both τ and β. The corresponding values are τopt and βopt, i.e. Gmax

is attained at these values. Since the local Reynolds number R is the essential
parameter for an isolated Hartmann layer or ASBL, Gmax as well as τopt and βopt

depend only on R when units of length, time and velocity are based on δ and
on the velocity scale U . For the streamwise-independent perturbations, all these
quantities exhibit distinct power-law dependences on R, which can be justified by
an asymptotic analysis of the Orr–Sommerfeld and Squire equations [4, 6]. We,
therefore, expect

Gmax = CGR
2, τoptHa = CτR, βopt/Ha = Cβ . (11)

Figs. 8 and 9 show that this scaling behavior indeed holds for different val-
ues of R and Ha when the Hartmann number is sufficiently large. The values of
the different parameters are given in Table 1. The maximum amplification and
the optimal time are smaller by about 1/2 for the Hartmann case in comparison
with the ASBL. The optimal wavenumber is about 50% higher. Although the
quantitative differences are not insignificant, the transient growth of optimal per-
turbations with and without magnetic field is fairly similar. Therefore, the flow
stability appears to be mainly dependent on the mean flow profile.

We finally remark that the values for the prefactors of the Hartmann flow are
somewhat larger than reported by Gerard–Varet. One may attribute the difference
to an improved resolution of the wavenumber range.

5. Conclusions. The transient amplification of primary linear perturbations
in a Hartmann channel flow at low and moderate Hartmann numbers has been

233



S.Dong, D.Krasnov, T.Boeck

investigated in this study. Optimal primary perturbations of different vertical
symmetry, i.e. antisymmetric and symmetric ones, have been considered to de-
termine a possible interaction between opposite Hartmann layers. This was not
addressed in [7], where only the global optimal perturbations, i.e. the antisym-
metric ones, where considered. The antisymmetric perturbation is less stable than
its counterpart, i.e. a higher energy amplification will be achieved at small Hart-
mann numbers in agreement with non-MHD channel flow. The difference in energy
amplification between the antisymmetric and symmetric perturbations decreases
rapidly with the Hartmann number, and at Ha = 7 the two layers can be viewed
as isolated and non-interacting layers.

The convergence to the antisymmetric perturbation has been investigated by
iterating from initial random perturbations. More iterations are necessary to ap-
proximate the antisymmetric perturbation solution at a large Hartmann number,
though the amplification factor may not change significantly. The convergence
rate has a simple exponential relationship with the Hartmann number.

Finally, we notice that the magnetic damping of perturbations is fairly weak,
which is also suggested by the simulations of turbulent Hartmann flow [15]. As
a result, the energy amplification in the Hartmann flow turned out to be close to
that in an asymptotic suction boundary layer. For this reason, the transition to
turbulence in the Hartmann flow should resemble that in an asymptotic suction
boundary layer. A comparison between the Hartmann flow and the ASBL con-
cerning the growth of secondary perturbations on boundary layer streaks is the
subject of ongoing work.
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