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We present an experimental and theoretical study of the dynamics of wakes generated
by magnetic obstacles. The experimental obstacle was realized by circulating a liquid
metal inside a closed loop with a slender cross-section and imposing a fixed localized
magnetic field in a specific spot of the loop. Experimental observations made with an
Ultrasonic Doppler Velocimeter include records of the axial velocity of liquid metal as a
function of the axial coordinate in the region where the wake of the obstacle is formed.
This information reveals important features of the stability and dynamics of the wake
of the magnetic obstacle. The theoretical study is based on a numerical solution of a
quasi-two dimensional model of the MHD balance equations whose non-dimensional form
indicates that the flow can be described in terms of two parameters, the Reynolds and
the Hartmann numbers. The numerical model considers the induced magnetic field as
an electromagnetic variable (B-formulation). Theoretical studies predict that for a given
Hartmann number, the flow transits from a steady state to a time-dependent state as the
Reynolds number is increased as in the wake of a rigid obstacle, but in sharp contrast
to this case, when the Reynolds number is increased further, the flow becomes steady
again. Our experimental observations confirm that this prediction is correct.

Introduction. The term magnetic obstacle is used to denote the Lorentz
force that opposes the flow of an electrically conducting fluid due to the presence
of a localized magnetic field. The relative motion between the fluid and the applied
magnetic field induces electric currents that interact with the field and generate a
localized Lorentz force that acts as an obstacle for the flow. In the 1970’s, it was
realized that complex velocity structures could appear in flows under non-uniform
magnetic fields [1], although experimental results were not able to confirm this
fact [2]. In the last decade, several studies (mainly theoretical) have explored the
flow past magnetic obstacles and described important physical features [3]–[12].
The first studies used a numerical approach to provide a quasi-two-dimensional de-
scription of the flow in conditions, where inertial effects were not negligible [3], and
under creeping flow conditions [4]. It was shown that both time-dependent and
steady vortical flows that in some aspects resemble flows past bluff bodies, may
appear. Through numerical simulation and experiments, other studies revealed
that a steady six-vortex pattern that was not observed in hydrodynamic flows
could appear in the wake of a magnetic obstacle at certain values of the Reynolds
number Re, interaction parameter N (or equivalently the Hartmann number Ha)
and constrainment factor κ defined as the ratio of the lateral size of the magnet
exposed to the oncoming flow to the width of the channel [5, 6]. The analogy be-
tween flows past solid and magnetic obstacles has been investigated, recognizing
that important differences exist between these two physical situations [7, 8]. Other
numerical simulation studies have shown that the imposition of magnetic fields of
different strengths may give rise to transitional flow regimes for a fixed Reynolds
and different values of the interaction parameter, observing vortex shedding phe-
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nomena as well as sustained turbulent bursts close to the magnetic wake region [9].
Recently, the influence of a localized non-uniform magnetic field on liquid metal
flow was investigated numerically using the quasi-static approximation to analyze
the three-dimensional flow transformation and the generation of vortex structures
by a strong magnetic dipole field [10]. An important feature of the wakes generated
by magnetic obstacles, detected with the ultrasonic velocity profile method, is that
the length of the recirculation region behind the magnetic obstacle increases with
the Reynolds number to reach a maximum and then decreases [11]. Preliminary
theoretical studies indicate that for large enough Hartmann numbers, increasing
the Reynolds number results in the formation of a wake behind the magnetic obsta-
cle with similar features to a von Kármán vortex street that occurs behind a rigid
obstacle, but in sharp contrast to the dynamic behavior of the wake formed by a
rigid obstacle; a further increase of the Reynolds number leads to a reduction of
vortex shedding behind the magnetic obstacle [12]. In the present contribution, we
extend the study presented in [12] by describing the experimental recordings that
were made to detect the axial velocity of the flow of liquid metal in the presence of
a magnetic obstacle with the objective of determining representative properties of
the wake. The observations show that for a fixed Hartmann number, the energy
contained in the vortices of the wake does present a maximum as a function of the
Reynolds number, indicating that the obstacle sheds vorticity to the ambient in a
finite range of Reynolds numbers.

1. Experimental setup. The experimental device used in the observa-
tions described in this paper is a rectangular loop made from acrylic (Polymethyl
methacrylate) walls with a rectangular effective cross-section of 1 cm×8 cm. The
lengths of the large and short legs of the duct are 85.8 cm and 40 cm, respectively.
The loop is built in sections joined with flanges and the whole system is fixed with
mounts that separate it from the floor of the table, making it easier to detect pos-
sible leaks. An MHD induction pump with rotating permanent magnets is located
straddling one of the long legs. The pump consists of a motor that spins two disks
where 24 permanent neodymium magnets are mounted radially; this device sets
the liquid metal in motion around the loop. The velocity of the liquid metal is
measured by a Signal Processing ultrasonic Doppler velocimeter (UDV) using a
probe of 0.8 cm in diameter and a wave frequency of 4 MHz. With this equipment,
it is possible to determine one component of the velocity along the propagation
line of the acoustic wave emerging from the emitter. The ultrasonic gauge was
fixed at the downstream end of the region of analysis to detect the axial velocity
along the axial coordinate. An appropriate mount was used to place the gauge at
different vertical positions. The flow generated by the pump is characterized using
the Reynolds number defined as Re = UDh/ν, where U is the average axial velocity,
Dh is the hydraulic diameter of the cross-section and ν is the kinematic viscosity
of the working fluid (see below). Given that the geometry of the duct and the
physical properties of the fluid are fixed, the range of Reynolds numbers available
with the experimental equipment depends on the power delivered by the pump (or
equivalently the pressure difference) and on the resistance of the duct. We deter-
mined the range of the Reynolds number available through direct measurement of
the axial velocity. Our measurements indicated that 869 < Re < 4960.

A photograph of the experimental device indicating the position of the MHD
pump, the magnets and the UDV system, is shown in Fig. 1. The design of
our equipment follows closely that of similar facilities developed at the Technical
University of Ilmenau, Germany (see, for instance, [14] and [15]). A sketch showing
the position of the magnets and the UDV, together with some details of the flow,
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Fig. 1. The experimental liquid metal loop. The MHD pump is in the far long leg.
The disks with permanent magnets and the liquid metal rotate in the counterclockwise
direction. The magnet that generates the magnetic obstacle is close to the central part
of the near long leg, 30 cm away from the upstream corner and 4 cm above the lower wall
of the duct. The ultrasonic gauge is in the far right of the picture near the duct corner.
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Fig. 2. Sketch of the observation zone and position of the axis of coordinates. 1 –
upstream velocity profile, 2 – magnets, 3 – wake of the magnetic obstacle, 4 – line for
ultrasonic Doppler velocity recordings, 5 – ultrasonic Doppler velocimetry probe.

and the axes of coordinates used in the numerical study are shown in Fig. 2.

The working fluid is a Ga(68%)In(20%)Sn(12%) eutectic mixture which has
a melting temperature of 10.5○C and a kinematic viscosity of ν = 3.3 × 10−7 m2/s.
The magnetic obstacle is created by two 2.54 cm×2.54 cm×1.25 cm neodymium
magnets placed on the outer side of the opposite vertical walls of the central part
of one of the long legs. The magnets are located 30 cm away from the upstream
corner and 4 cm from the lower horizontal wall of the duct. With this magnet
arrangement, the maximum magnetic field that can be obtained at the center of the
duct is 0.23T, and the constrainment factor is κ = 0.31 (side of the magnet/height
of the duct). A second non dimensional parameter that characterizes the flow is
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Fig. 3. Magnetic field distribution at the center of the duct for Hartmann numbers
58 (left) and 75 (right). The central circles represent 0.125T and 0.175T for Hartmann
numbers 58 and 75, respectively. In the two cases, the contours are separated 0.025T.

the Hartmann number defined as Ha = B0D
√
σ/ρν, where B0 is the maximum

strength of the magnetic field at the center of the duct, D is the gap between
the vertical walls of the duct, and σ and ρ are the electric conductivity and the
density of the working fluid, respectively. For GaInSn, σ = 3.46×106 1/Ωm and ρ =
6360 kg/m3. The range of Hartmann numbers available depends on the intensity of
the permanent magnets used and their relative position with respect to the liquid
metal, but increasing the distance of the magnets to the vertical walls reduces
the effective magnitude of the magnetic field inside the duct and also reduces the
Hartmann number. In Fig. 3, we show the distribution of the normal component
of the magnetic field for distances of 3.6 cm and 3.1 cm between the magnets.
These conditions yield Hartmann numbers of 58 and 75, respectively. As can be
appreciated, both magnetic fields have similar to Gaussian distributions, but with
different spread and maximum values. As it is usual in liquid metal MHD duct
flows, the magnetic Reynolds number defined as Rm = µ0σUD is very small.

2. Numerical model. A quasi two-dimensional (Q2D) model is proposed
to simulate the MHD flow through a spatially localized magnetic field produced
by magnets fixed to the channel walls. This simplified model can be regarded as a
first approach that captures the dominant physical effects without going into the
complexities of a full three dimensional model. Within this approximation, only
the component of the magnetic field normal to the vertical walls is considered. The
origin of the axis of coordinates is located on the line that joins the geometrical
center of the magnets and the halfway between the vertical walls of the duct
(see Fig. 2). The dimensionless axial (x) and vertical (y) coordinates increase in
the downstream and upward directions, respectively, and are scaled with the side
length of the magnet L. The traversal coordinate (z) is defined in the direction
perpendicular to the vertical walls and scaled by D. The main assumption of
the Q2D model is that the transport of momentum in the z-direction is mainly
diffusive so that the velocity components can be expressed in the form

u(x, y, z, t) = ũ(x, y, t)f(x, y, z), v(x, y, z, t) = ṽ(x, y, t)f(x, y, z), (1)

where ũ and ṽ are the z-averaged velocity components in the x- and y-directions,
respectively. The velocity components are scaled by the average axial velocity U .
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The function f considers the variation of the velocity profile in the z-direction and

must satisfy the normalization condition ∫
1/2
−1/2 fdz = 1. Its dependence on the x

and y coordinates must reflect the different flow regions due to the localization of
the magnetic field. Details of the quasi-two dimensional model can be found in [3].
The friction function f can be obtained from the following balance between the
viscous and the Lorentz force

d2f

dz2
− (HaB0

z(x, y))
2
f = ε2Redp

dx
, (2)

where ε is the aspect ratio D/L. The terms on the left-hand side correspond to
the viscous and induced Lorentz forces, while the term on the right-hand side is
an externally imposed axial pressure gradient which generates the duct flow and is
constant. It should be noted that due to the normalization for f , this parameter
does not appear explicitly in the solution. The function f must satisfy no-slip
conditions at both vertical walls f(z = ±1/2) = 0. The solution that satisfies the
boundary and normalization conditions has the form

f = −Ha e−Ha(z+0.5)

× eHa − e2Ha − eHa(z+0.5) + eHa(z+2.5) + eHa(1+2z) − e2Ha(1+z)

4eHa + (1 − e2Ha)(Ha + 2)
,

(3)

where Ha = HaB0
z is defined as the local Hartmann number.

In order to obtain the z-average from the conservation equations, we sub-
stitute expressions (1) and (3) into the governing MHD equations and integrate
in the z-direction. Dropping the tilde, the dimensionless averaged equations of
motion take the form

∂u

∂x
+ ∂v

∂y
= 0, (4)

∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y
= −∂p

∂x
+ 1

Re
∇2
⊥u +

u

τ
+ Ha2

ε2Re
jyB

0
z , (5)

∂v

∂t
+ u∂v

∂x
+ v ∂v

∂y
= −∂p

∂y
+ 1

Re
∇2
⊥v +

v

τ
− Ha2

ε2Re
jxB

0
z , (6)

where the pressure p, the electric current density components jx and jy, and the
applied field B0

z(x, y) are scaled by ρU2, σUB0, and B0, respectively. The sub
index ⊥ denotes the projection of the nabla operator on the (x, y)-plane. The
time t is normalized by L/U . The model shows that there are two nondimensional
parameters, the Reynolds (Re) and the Hartmann (Ha) number (for definitions see
Section 1). The third term on the right-hand side of Eqs. (5) and (6) represents
the Hartmann–Rayleigh friction and arises due to the boundary layers at the
Hartmann walls. The Hartmann–Rayleigh friction can be conveniently represented
in terms of a characteristic dimensionless timescale τ , which indicates the decay
of vorticity due to dissipation in the Hartmann and viscous layers. The inverse of
this time scale is given by

τ−1 = 1

ε2 Re

df

dz
∣
1/2

−1/2
= − 1

ε2Re

2Ha2(eHa + 1)2

4eHa + (1 − e2Ha)(Ha + 2)
. (7)

In the quasi-static approximation the magnetic induction equation takes the
form

∇2
⊥bz − u

∂B0
z

∂x
− v ∂B

0
z

∂y
= 0, (8)

219



D.R.Domı́nguez, A. Beltrán, J.J. Román, S. Cuevas, E.Ramos

where the induced magnetic field bz has been normalized by RmB0. Once bz
is determined, Ampere’s law gives an expression to calculate electric currents,
namely,

jx =
∂bz
∂y

and jy = −
∂bz
∂x

. (9)

A solution to the quasi two-dimensional model model given in Eqs. (4)–(9) is
sought via numerical methods. The finite volume method described in [16] on an
orthogonal equi-distant grid was used to solve the conservation equations (4)–(8).
The distribution of the applied magnetic field B0

z(x, y) required for the numerical
solution is a fit of the experimental magnetic field (Fig. 3) with the expression given
by [13] for a square surface magnetized in the normal direction. The numerical
solution was obtained in a rectangular domain of 35 × 3.2 non-dimensional units
using a grid of 700× 256. The boundary conditions consider no-slip conditions for
the velocity components at y = ±1.6. At the inlet (x = −10), a uniform velocity
profile is used, whereas Neumann boundary conditions are imposed at the outlet
(x = 25). We assume that the induced magnetic field is zero bz = 0 at all boundaries.
The standard time-marching procedure (Euler method) was used for the time
integration with a non-dimensional time step of 5 × 10−4.

3. Results. Exploratory observations indicate that the flow generated by
the magnetic obstacle is a very complex, three dimensional, time dependent phe-
nomenon, whose comprehensive description would require a large research pro-
gram. In the present study, we concentrate on a very specific aspect of this flow,
namely, in the detection of vortical structures in the wake as functions of the
Reynolds number. Before we present quantitative results, it is convenient to de-
scribe some qualitative features of the flow. The axial velocity u in the (x, t) space
for the vertical position y = 12.7mm is plotted in Fig. 4. The left panel displays
the experimental recordings obtained with UDV for Ha = 75 and Re = 2300, and
the right panel shows similar results obtained with the numerical solution using
Ha = 80 and Re = 2500. A zoom is provided for the experimental results. An inter-
esting feature of the experimental records is that the axial velocity just upstream
the magnetic obstacle is reduced (red-purple vertical strip at –50mm < x < 0mm)
and then it increases in the region 0mm< x <140mm. The inclined, red and

t [s]

x [mm]

t [s]

x [mm]

t∗

x∗

Fig. 4. Map of the axial velocity u in the (x,t) space, y = 12.7mm. Left: UDV
experimental observations for Ha = 75, Re = 2300. Right: numerical calculation for
Ha = 80, Re = 2500.
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Fig. 5. Experimental axial velocity u as a function of time at the point x = 400mm,
y = 12.7mm for Ha = 75. Starting from the top, traces were obtained for Re = 1272, 3163
and 4568. Note the different scales in the ordinates of the three graphs and that the
largest amplitude corresponds to Re = 3163.

purple parallel strips in the region x > 170mm indicate the transit of a periodic
perturbation in time for a fixed point in space, or in space for a snapshot. This
velocity pattern is consistent with vortex shedding with an approximate charac-
teristic time of the order of 1.0 s. The results obtained with the numerical solution
display similar features, with periodic inclined parallel strips that indicate the
transit of periodic structures.

In order to a make a more specific analysis, we show in Fig. 5 a sample of
the axial velocity traces observed at a fixed point (x = 400mm, y = 12.7mm) as
a function of time for Ha = 75 and Re = 1272, 3163 and 4568. The sampling
frequency was 20Hz. The original traces were smoothed with a moving average
filter of 15 points, equivalent to a sampling rate of 0.75 s. As seen, the traces are
irregular, with many Fourier modes involved, and also the average amplitude of
the perturbations is not a monotonous function of the Reynolds number. Note
that the time average of the signals increases with the Reynolds number, as ex-
pected, but in contrast, we find that the amplitude of the velocity fluctuations is
larger for the case Re=3163 than for of the other two cases in Fig. 5. With the
velocity traces alone, it is difficult to quantify the amplitude difference between
the different cases and, in the following, we will develop methods to obtain a more
quantitative assessment. The average velocity obtained by experimental and nu-
merical methods is of the same order of magnitude, indicating that this feature is
correctly captured with the model. However, the oscillations superimposed to the
average flow calculated numerically have single or few Fourier modes, with periods
of approximately 3.7 non-dimensional units. See also the right panel of Fig. 4.

An alternative way of displaying the previous results that is more amenable
for comparison is to plot the parameter A defined by

A = u − ⟨u⟩, (10)

where ⟨u⟩ is the average axial velocity over a time interval I0. In Fig. 6, we
show 40 s of the readings of the variable A as a function of time for the same
Reynolds numbers analyzed in Fig. 5 and using I0 = 53 s (103 readings). Inspection
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Fig. 6. The parameter A as a function of time for three Reynolds numbers: Re = 1272
(blue line-dots), 3163 (black continuous line) and 4568 (red dots).

L̃
2

Re

L̃
2

Re

Fig. 7. The parameter L̃2 as a function of the Reynolds number. Left panel: ex-
perimental observations. Ha = 58 (blue line with squares) and Ha = 75 (red line with
asterisks). The lines are fits to the experimental data. The fits of L̃2 attain maxima at
Re = 3190 and 2750 for Ha = 58 and 75, respectively. Right panel: theoretical calcula-
tions. Ha = 80, the maximum is attained at approximately Re = 600.

indicates that the amplitude of the traces is of the order of 10mm/s and that
the amplitude of the perturbations obtained with Re = 3163 is larger than that
found in the other cases. The corresponding properties of the flow obtained with
numerical integration show that the amplitude of the oscillation is much smaller
(approximately of 0±25mm/s), which is by a factor of 20 smaller than the observed
experimental value.

In order to make a quantitative comparison, we define the parameter L2 as

L2 = 1

I
∫

I

0
A2dt. (11)

Note that L2 is a function of the Hartmann and Reynolds numbers only and
indicates the average of the square of the amplitude of the axial velocity oscillation
with respect to its average value in the interval I which is related to the kinetic
energy of the vortices in the wake.

In the left panel of Fig. 7 we show the experimental results for L2 at Ha = 58
and 75 as functions of the Reynolds number. The actual data shown in the
figure and denoted by L̃2 are normalized with the maximum (smoothed) value

of L2(Ha = 75). As it can be seen from the figure, the trends of L̃2 are not
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monotonous but display maxima. Our experimental device allows us to capture
data for very small values, which leads us to determine the critical Reynolds num-
ber, where the first bifurcation occurs, i.e. where the wake of the magnetic obstacle
becomes time dependent; L̃2 is zero for Reynolds numbers smaller than the crit-
ical ones. The first critical Reynolds number is found at approximately 900 for
the two cases explored. The experimental equipment prevents us to obtain data
for Reynolds numbers larger than approximately 5000 for Ha = 58 and 75, but in
the two cases, the data display an unmistakeable trend towards smaller values.
Extrapolating the experimental data available, the Reynolds number where L̃2

reduces to zero, is approximately 6000 for Ha = 75, but for Ha = 58 it is difficult
to estimate the Reynolds number, where the energy of the perturbations in the
wake vanishes. The maxima of the smoothed data are attained at Re = 3190 and
2750, respectively, for Ha = 58 and 75. The trend displayed by L̃2 obtained with
the numerical solution and considering Ha = 80 is shown in the right panel of
Fig. 7. The data have been normalized with their maximum value. The variable
L̃2 obtained by numerical calculations displays qualitative features similar to those
observed in the experiment, and the range of Reynolds numbers where the wake
of the obstacle sheds vortices, is approximately the same for theory and experi-
ment, but the amplitude is not. The latter is a consequence of the fact that the
model underestimates the amplitude of the velocity fluctuations, as indicated in
the discussion of Fig. 6.

4. Conclusion. Experimental records of the wake formed by a magnetic
obstacle in a liquid metal flow made by an ultrasonic velocimeter are presented.
The velocity readings show intermittent perturbations that indicate vortex shed-
ding from the magnetic obstacle. We observe that for small Reynolds numbers
(300 < Re < 700) the energy of the perturbations in the wake increases to reach
a maximum that depends on the Hartmann number. Then the energy reduces
monotonically up to the maximum Reynolds number that can be reached with
our experimental equipment. This indicates that the oscillatory wake is present
in the flow only in a finite range of Reynolds numbers. This observation is in
qualitative agreement with a quasi-two-dimensional theory also presented in this
report. Although a more detailed study of the behavior near the first critical
Reynolds number where the steady flow becomes time dependent is required, the
data available indicates that the first bifurcation is a supercritical Hopf bifurca-
tion (for a definition see [17]). The first critical Reynolds number detected is much
larger than the rigid cylindrical obstacle (approximately 45 [18]); this effect may
be due to the stabilizing effect of the lateral walls. Unfortunately, our experimen-
tal equipment prevents us to explore the nature of the inverse bifurcation found at
large Reynolds numbers, but the numerical solution suggests that it is an inverse
supercritical Hopf bifurcation.

The numerical model used to simulate the specific feature of the flow analyzed
in this contribution does capture the magnitude of the average velocity correctly,
but fails to give good results on the complexity and magnitude of the velocity
fluctuations.
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