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Using a matched asymptotic expansion based on the small parameter 1/Ha, this paper
addresses an original analytical coupling between surface rheology of, e.g., a gradually
oxidizing liquid metal surface, and a supporting annular MHD flow. It is shown that the
level of surface viscosity drives the electrical activation of the Hartmann layers, heavily
modifying the MHD flow topology and leading to the emergence of a Lorentz force, for
which the interaction with the flow is not classical. These analytical results are compared
to a 2D numerical study, highlighting a fair agreement as soon as Ha ≥ 10.

Introduction. In many industrial applications, there is a rising concern of
how to model the interactions between an electrically conducting fluid and a second
phase, when both of them are subjected to an external magnetic field. Typically,
the issue of how a magnetohydrodynamic (MHD) flow with a liquid/gas interface
is affected when oxidation occurs is of prime interest. It potentially affects many
fields, such as metallurgy (stirring by bubble plumes in reactors [1]), microelec-
tronics (MHD driven metal cooling processes [2]), or nuclear fusion technology
(two-phase MHD issues with the breeder blanket based cooling loop [3]).

To our knowledge, little is actually known about the surface rheology of MHD
flows, e.g., when a liquid metal is progressively contaminated through oxidation
processes. On the one hand, the viscoelastic properties of liquid metals have
been experimentally investigated [4], highlighting radically different mechanical
behavior characteristics that depend on the level of oxidation, but those works are
not related to MHD. On the other hand, the MHD of single-phase laminar flows
exposed to strong uniform magnetic fields has been studied extensively for many
years, for numerous layouts [5–7]. However, it seems that the fundamental issue
of varying boundary conditions has been essentially considered from an electrical
point of view. Thus, in the case of duct flows, the walls can have infinite electrical
conductivity (see Shercliff [5]), no conductivity (Moreau [7]), mixed infinite and
vanishing conductivities (Hunt et al. [6]), or arbitrary (Tabeling et al. [8]). The
electrical influence of the walls, traduced by the ratio of bulk and wall electrical
conductivities σ/σw, completely modifies the electrical circuit and results in a
major impact on the topology of the MHD flow.

In this study, the same kind of general approach for the boundary condition
is adopted, but this time from a mechanical point of view. In the light of what
is previously enhanced, for flows including liquid/gas interfaces, the competition
between bulk MHD and surface rheology (driven by the contamination rate of
the liquid surface) may lead to a mechanically varying boundary condition. This
change in liquid surface condition is suspected to affect greatly the overall MHD
flow (see, e.g., the oscillatory flow patterns caused by surface oxidation described
by Zhang et al. [9], in the case of a liquid metal subjected to a rotating magnetic
field). To deal with the practical or industrial conditions, there is a need to inves-
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Fig. 1. Geometry under consideration. Note that (A): z = h0/2 and (B): r = (ri+r0)/2
are cutting lines used for interpretation of the results.

tigate the surface mechanics separately from the bulk flow, especially, when the
free surface is gradually oxidizing. Hence, the mechanics of a more or less oxi-
dized interface coupled with an MHD liquid metal bulk is worthy of investigation,
which is, to our knowledge, an original approach coupling both MHD and surface
rheology.

1. Outlines. The system under consideration, the annular MHD viscometer,
is displayed in Fig. 1. The problem is considered 2D axisymmetric (∂/∂θ = 0),
so that the domain can be reduced to the cross-section of the annular channel
(Fig. 1b). The interest in this configuration, which is inspired by the deep channel
viscometer [10–13], is that it is likely to generate strong velocity gradients along
the ez-axis, whereas these gradients develop preferentially along the er-axis in the
more conventional case of the Taylor–Couette layout. As shown later in Eq. (8),
the coupling term between the interface and the sub-phase flow brings a ∂vθ/∂z
term into play, where vθ is the azimuthal sub-phase velocity; the resulting shearing
is expected to be more significant than in the Taylor–Couette layout, and the
effects of varying boundary conditions at the liquid surface may be more easily
highlighted. By considering the vertically applied magnetic field B0, it can be
demonstrated that the generating term for the azimuthal magnetic induction Bθ

is ∂vθ/∂z as well (see Eq. (1)), which explains the interest in favoring gradients
along ez.

The aim of this paper is to highlight the competitive effects between sur-
face shearing and a strong transverse uniform magnetic field, especially, with the
emergence of an electrically active Hartmann layer along a gradually denser liquid
surface, e.g., under oxidation processes. For this purpose, two approaches are de-
veloped, i.e. an analytical method and a numerical modelling, both being based
on a (v,B) formulation (see hereafter).

2. Mathematical model.

2.1. Bulk flow. Using the Maxwell and Navier–Stokes equations and as-
suming that the Reynolds number is low enough so that the inertial effects can
be neglected, we can derive the following set of equations that governs the MHD
problem and traduces the balance between electromagnetic and viscous effects
(see, e.g., [6]), where the superscript ‘∗’ refers to non-dimensional quantities:

∂2B∗θ
∂r∗2

+ 1

r∗
∂B∗θ
∂r∗

−
B∗θ
r∗2
+
∂2B∗θ
∂z∗2

+Ha
∂v∗θ
∂z∗
= 0, (1)

∂2v∗θ
∂r∗2

+ 1

r∗
∂v∗θ
∂r∗
−

v∗θ
r∗2
+
∂2v∗θ
∂z∗2

+Ha
∂B∗θ
∂z∗

= 0, (2)
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with r∗ = r/h, z∗ = z/h, v∗θ = vθ/V̂ , B∗θ = Bθ/B̂, Ha = B0h
√
σ/η, and with

B̂ = µV̂√ση, µ being the magnetic permeability of the fluid, and V̂ = hω, so that
v∗θ (r∗, z∗ = 0) = r∗ for the rotating floor. The associated boundary conditions are
written as follows (see, e.g., [5] for the condition B∗θ = 0 all around the bulk flow):

v∗θ (r∗ = ri/h, z∗) = 0, B∗θ (r∗ = ri/h, z∗) = 0, (3)

v∗θ (r∗ = r0/h, z∗) = 0, B∗θ (r∗ = r0/h, z∗) = 0, (4)

v∗θ (r∗, z∗ = 0) = r∗, B∗θ (r∗, z∗ = 0) = 0, (5)

B∗θ (r∗, z∗ = 1) = 0, (6)

v∗θ (r∗, z∗ = 1) = v∗θS(r∗). (7)

2.2. Surface flow. The boundary condition (7) brings a new unknown into
play, which is the surface velocity vθS . This stands as the first term of the two-
way coupling between the surface and MHD bulk flow equations. The surface
flow equation can be derived from a momentum balance written on an elementary
heterogeneous volume that straddles a liquid surface of zero thickness (Gibb’s
approach):

Bo(
d2v∗θS
dr∗2

+ 1

r∗
dv∗θS
dr∗

−
v∗θS
r∗2
) =

∂v∗θ
∂z∗
∣
z∗=1

. (8)

Here, use is made of the surface “excess” viscous shear viscosity introduced by
way of the Boussinesq–Scriven constitutive law (see, e.g., [14] for further details).
The Boussinesq number Bo = ηS/ηh describes the balance between bulk (η is the
Newtonian bulk shear viscosity) and surface (ηS is the surface excess shear viscosity
along the liquid surface) viscous shearing. To solve for Eq. (8), also referred to as

Fig. 2. Two-way analytical coupling between the bulk and surface flows [15].

197



J.Delacroix, L.Davoust

the jump momentum balance (JMB), the following Dirichlet end-point boundary
conditions are required:

v∗θS (r∗ =
ri
h
) = 0, v∗θS (r∗ =

ro
h
) = 0. (9)

2.3. Two-way analytical coupling. The overall coupling process between
the sub-phase flow v∗θ and the surface flow v∗θS stems from a somewhat tedious
calculation process (summarized in Fig. 2), based on a matched asymptotic ex-
pansion for the bulk flow solution and on the determination of a Green function
for calculating the surface velocity. Details of the calculations are available in a
companion paper [15].

2.4. Numerical modelling. The previous analytical modelling derives from
a matched asymptotic expansion based on the vanishing parameter 1/Ha. Strictly
speaking, these results are mathematically true when Ha→∞. However, in order
to keep significant physical insight, a large range of values for Ha has been tested
and interpreted, resulting in different MHD topologies. The interpretations stem-
ming from this analysis must, therefore, be benchmarked to check how far they are
relevant when Ha is only considered high enough (and not infinite). Consequently,
there is a need for a method that circumvents the infinite Ha issue, even if the
model must still conform to the assumption that the inertial terms are neglected.

Eqs. (1), (2) and (8), along with the boundary conditions (3), (4), (5), (6), (7)
and (9) are discretised using the finite element method (FEM). A fully-coupled
approach, which operates on the full Jacobian matrix as one entity, is implemented.
This approach is based on the Newton–Raphson method, which linearises the
non-linear problem based on the current solution, at each iteration. A linear
stationary direct solver is implemented to solve for the linearised problem, i.e.
the MUltifrontal Massively Parallel sparse direct Solver (MUMPS) based on LU
factorisation (see MUMPS support [16] for further details). The computational
domain is meshed with 18036 elements, mainly triangular, with a specific boundary
layer mesh refinement at the boundaries of the fluid domain. The thickness of the
first layer is carefully chosen so that the essential physics is captured.

3. Results and interpretations.
3.1. Analytical asymptotic results. In this section, the aim is to highlight

two radically different MHD regimes and to see how the overall flow topology can
be strongly modified by surface rheology through surface viscous shear. Conse-
quently, only the asymptotic cases Ha≫ Bo and Ha≪ Bo are discussed.

If Ha ≫ Bo, the v⋆θ contours demonstrate a 2D tendency with exclusively
radial velocity gradients (apart near the side-walls), as seen in Fig. 3a. This rigid-
body motion, traducing the electromagnetic blocking of the flow first observed by
Lehnert [17], is caused by the well-known two-dimensionality tendency of magnetic
induction. As a consequence, the interface is perfectly aligned with the bulk, and
the bulk viscous shear at the interface is no longer significant. Therefore, the
electric current density is found essentially vertical, closing up only inside the
Shercliff layers (see Fig. 3c).

Now, when Ha ≪ Bo, the results consist of a quite uniform “motionless”
configuration, the momentum being mainly concentrated near the right corner
at the bottom (Fig. 3b). This singular phenomenon is partially explained by
the fact that, in this case, the surface dynamics is governed by surface viscous
shear and behaves as a non-sliding membrane. Thus, v⋆θ must match with the
vanishing component v⋆θS at the surface. However, this cannot solely explain the
motionless core across the whole cross-section. Other reasons can be found by
focusing on the electric current densities. Due to strong velocity gradients near

198



Impact of surface viscosity upon an annular magnetohydrodynamic flow

(c) (d)

(a) (b)

Fig. 3. Bulk MHD quantities for the two extreme cases Bo ≪ Ha (left-hand column)
and Bo ≫ Ha (right-hand column). (a) and (b) represent v⋆θ , and (c) and (d) represent
the vector current density j⋆ with B⋆θ streamlines. For a given velocity Ω = 0.25 rpm, with
r0 = 7 cm, h = 1 cm, σ = 2.3 × 106 S⋅m−1 and η = 2.4 × 10−3 N⋅m−1, J = 4.1 × 102 A⋅m−2 for
Ha = 30 (right-hand side) and 6.8×102 A⋅m−2 for Ha = 50 (left-hand side). j⋆ is log-scaled
by the magnitude exp{(ln (∣∣j∣∣/∣∣j∣∣max)) /(1 + p)}, p = 3 for (c) and p = 1 for (d).

the liquid/gas surface and to current continuity, electric current densities are now
found to flow within the top and bottom Hartmann layers, that are, therefore,
electrically active (see Fig. 3d. The presence of a strong radial component of the
electric current density, in combination with the imposed magnetic field B0ez,
leads to the emergence of a Lorentz force −jrB0 along the azimuthal direction. As
deduced from Fig. 3d, this Lorentz force is negative at the bottom and positive at
the top of the channel cross-section. Consequently, this leads to an electromagnetic
damping of the momentum injected from the rotating floor at the bottom, while
it enhances the momentum in the upper part of the channel. Both contributions
lead to a homogenization of the flow, which explains the overall flow patterns.

3.2. Numerical results. In order to compare analytical and numerical re-
sults, the velocity and electric current density profiles are displayed in Fig. 4,
along the cutting lines (A) and (B) (defined in Fig. 1), allowing for the analysis of
the MHD core flow and the Shercliff or Hartmann layers, respectively. Note that
the radial component of electric current densities is several orders of magnitude
lower than the axial component inside the Shercliff layers; the opposite situation
holds inside the Hartmann layers, due to the current continuity. Consequently,
the choice is made to plot only j⋆z along (A) and only j⋆r along (B).
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Fig. 4. Numerical (symbols) and analytical (lines) velocity and electric current density
components along the cutting lines (A) (left-hand column) and (B) (right-hand column).
The electric current densities are normalised with respect to the maximum electric current
Jmax reached for all cases, i.e. for Ha = 50, which corresponds to Jmax = 6.8× 102 A⋅m−2.

A quite satisfactory agreement between analytical and numerical results is
achieved. Both models predict the same evolution with respect to the dimen-
sionless numbers Ha and Bo. For the given Bo value, the flow evolves towards
the rigid-body motion previously highlighted with the increasing Ha, causing the
velocity to become independent of the axial coordinate, with an essentially axial
electric current (curves (⋯) and (◻)). For the given Ha number, the electrical
activation of the Hartmann layers with increasing Bo is obvious in Fig. 4d, and
the motionless homogeneous flow topology dominates (Fig. 4a,b), as shown, for
instance, by curves (−−) and (+).

As previously said, the analytical calculation is based on the assumption Ha≫
1, allowing for the matched asymptotic expansion to be performed. This stringent
condition does not apply to the numerical modelling, as long as the inertial effects
can be neglected. This is, therefore, interesting to determine the critical Ha value,
at the onset of which the two methods show a significant discrepancy. For this
purpose, v⋆θ and j⋆z profiles along (A) are displayed in Fig. 5 for several low Ha
values at the given Bo = 1.

Concerning velocity, the discrepancy is hardly noticeable (Fig. 5a). A major
difference consists of a non-vanishing velocity at the side walls for a very low
Ha = 2 value (curves (⋯) and (◇)). This non-physical result (the side-walls being
motionless) is explained by the fact that in the analytical study, the so-called inner
corner regions have been left out of the reasoning. The typical cross-section of such
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Fig. 5. Numerical (symbols) and analytical (lines) velocity and axial electric current
density along the cutting line (A) for Bo = 1. The electric current densities are normalised
with respect to the maximum electric current Jmax reached for all cases, i.e. for Ha = 15,
which corresponds to Jmax = 2 × 102A⋅m−2.

regions is O(Ha−1) ×O(Ha−1), which means that their influence on the flow is all
the stronger with lower Ha values (Ha = 2 here).

The discrepancy is more obviously observed in Fig. 5b. For Ha = 2 (curves
(⋯) and (◇)) or Ha = 5 (curves (−⋅−) and (◻)), the results significantly differ from
each other, whereas for Ha = 10 (curves (−−) and (◯)) or Ha = 15 (curves (—)
and (+)), the agreement is quite satisfying. As a consequence, the value Ha = 10
can be proposed as a threshold, above which the matched asymptotic expansion
proves relevant.

4. Conclusion. Based on both an original mathematical modelling and
a numerical modelling, the coupling mechanisms between the rheology of a liquid
surface and a supporting MHD bulk flow have been successfully investigated. The
competitive effects of surface viscous shearing and electromagnetism have been
highlighted: surface rheology is indeed found to monitor the generation of the
Hartmann layers, leading, therefore, to a major change in the topology of the
electrical circuit, which dramatically affects the overall MHD core flow. The com-
parison between the analytical and numerical results shows a good agreement and
allows for the value Ha = 10 to be selected as the threshold value for the relevance
of the matched asymptotic expansion.
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