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Abstract: In the present work, the problem of deformation of a double-layer drop, which is 
surrounded by other fluid, in an alternating electric field is solved. Permittivity and 
conductivity of all fluids are considered as constants. Fluids are assumed to be incompressible 
and viscous. The problem is solved by the method of expansion on small parameter which is 
proportional to the amplitude of an electric field squared. At the solution capillary forces are 
taken into account, the gravity is not taken into account. Average shape of the surface of the 
double-layer drop is found. 

1. Introduction 

The deformation of a simple liquid drop, immersed in other conducting fluid, which is 
subjected to an electric field, was investigated by many authors [1-5]. The most interesting 
researches deal with the form’s dependency on the frequency of the harmonic electric field [2, 
3, 5]. But there is one common thing in these papers: it is not possible for a prolate drop to 
become oblate while the frequency of electric field increases. In [5] the convective transport 
of a surface charge was taken into account, but it makes drops only more prolate. The purpose 
of this work is to investigate the form in the framework of double-layer liquid drop, and 
compare results with well-known ones in the framework of simple drop [2]. 

2. Presentation of the problem 

To describe the task, an electrohydrodynamic model is used. Electrohydrodynamics is a 
branch of fluid mechanics concerning electrical force effects, at the same time neglecting 
magnetic force effects. More specifically this model is described in [1]. 

 
Figure 1: Double-layered drop in the harmonic electric field 

 
Now let us consider an axisymmetric double-layer liquid drop, immersed in another liquid, 
and subject it to a harmonic electric field E∞ (Fig. 1). If the intensity of the field equals zero, 
surfaces of the double-layer drop are spherical with radii r=r1, r=r2. Liquids are assumed to 
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be dielectric with small electric conductivity. The dielectric permeability ε and conductivity λ 
of the liquids are considered as constants. Also, all liquids are incompressible and 
significantly viscous (µ = const). Moreover, the velocity is expected to be small, so it leads to 
a small Reynolds number. Because of it, the Stokes approximation can be used. Considering 
all these assumptions, fluid motion equations can be written as follows: 

 
Boundary conditions at all the interfaces : 

 

 
 

 
and the boundary conditions at the infinity: 

 
There  is a determinant of metrical tensor, K is a mean curvature, T is an interfacial tension, 

 is a charge on the surface,  is a form of the interfaces  and ,  is a 
surface Nabla. All the parameters of liquids inside, in the middle, and outside the droplet 
hereinafter will be marked “i”, “m” and “e” consequently. Also the properties of interfaces  
and  will be marked “1” and “2” consequently. [A] is a jump of A across the interface. 

3. Solution of the problem 

Before solving the problem, let us introduce some dimensionless parameters: 

 

 

 
and some dimensionless variables: 

 
From this moment all calculations will be performed in a dimensionless way. So, to simplify 
the notation we will not write asterisks anymore. The equations dimensionless form can be 
written as follows (hereinafter k takes values {i, m, e}): 

 

 
The boundary conditions on the inside surface  for : 

 

 

 

 
 

 
 



 for The boundary conditions on the outside surface  look the same: 
 

 
 

 
 

and, finally, the boundary conditions at the infinity: 
. 

In should be noted that: . 
Let us assume that α parameter is small, and use the asymp ethod - expand all functions totic m
(for example, v, p, σ) by this small parameter in the following way: 

 
The zero approximation of the small parameter corresponds to the absence of electric field. 
So, in this case, the drop’s form remains spherical, no flows appear. But there is a pressure 
jump on the interfaces because of interfacial tension. 

 
The first approximation by α for simple drop theory was presented in papers [2-5], and 
according to them, in this paper the same method is used. The whole system of equations 
splits into two parts. The first part is Laplace equation for electrodynamic potential and its 
boundary conditions, and the second part is the hydrodynamic equations and boundary 

not depend on the second part, it is possible to solve it 
separately, and then substitute the variables found to the second part. 
The solution for electric potential: 

conditions. As the first part does 

 

 

 

 
Knowing these formulas, it is possible to find the surface charge distribution. 
To find velocities and pressure let us introduce a stream function as follows, k = e, m, i: 

 
There  are constants, which can be found from boundary conditions. There are no formulas 
for  in this article because of their big size. So, velocities and pressure expressed in terms 
of these constants can be written in the following way: 

 
 

 
 

 
 

 
 



The main purpose of this work is to find deformation, so here are some formulas, which allow 
finding the form or the drop. 

 

 
Let us define a new parameter as: 

 
In the next section, we will show the dependence of parameter D on properties of liquids. 

4. Results 

, the de ce of d  deform  the freq f electric ω is 
n. The parameter iquids ar  the Ta

 µ, Pa*s T, N/m l =r /r

In this section penden rop a ntion D o u oency  field 
show s of l e in ble 1. 
 

ε λ, 1/(Om*m) 0 1 2
Magnetic fluid 0.015 5.2 10^(-6) 0.028 
Oil 0.03 2.2 1.4*10^(-12) 0.027 
Liquid X 

0.9 
0.003 2.46 10^(-16) 0.00325 

Table 1. Parameters of the liquids. 
Let us consider the case where the magnetic fluid is inside the drop, the oil is outside the drop, 
and the “liquid X” is in the middle. This liquid is almost like oleic acid, but with much 
smaller viscosity. 
In Fig. 2, you can see the difference between simple drop of magnetic fluid in oil and double-
layer drop, including “liquid X” in the middle. As you can see the double-layer drop can 
change the prolate form (D>0) to oblate form (D<0) while the frequency increases, instead of 
the simple drop. 

 
Figure 2: Deformation of magnetic drops in oil. 

 
Now let us consider another case (Fig. 3) where the magnetic fluid and oil changes their 
places, and “liquid X” remains in the middle. Dependencies of D on the frequency ω for the 
double-layer drop and the simple drop of oil in magnetic fluid are also different. 

 
 



 
Figure 3: Deformation of oil drops in magnetic fluid. 

5. Conclusion 

So, in this work the double-layer liquid drop in harmonic electric field is considered. Many 
calculations are made to find the parameters of liquid “X” where the double-layer drop 
deformation differs considerably from simple drop deformation. It is possible due to the thin 
middle-layer of liquid “X” with very small viscosity and conductivity. 
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