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Abstract  :  A model of a single ferromagnetic particle with a finite coupling energy of the
magnetic moment with a body of particle is formulated and regimes of its motion in liquid in
a rotating magnetic field are investigated. As the special case, when the field strength H are
large compared to anisotropy field Ha, the stability of synchronous with the field regime of
superparamagnetic particle in precessing magnetic field is studied. 

1. Introduction

The dynamics of magnetic particle in AC magnetic field plays an important role in different
phenomena and applications. The technique of magnetic hyperthermia uses energy dissipated
by the motion of magnetic particles in an AC field for cancer therapy [1-3]. It was predicted
that magnetotactic bacteria in a rotating magnetic field should follow complex trajectories [4],
which  were  also  found  in  experiment  [5].  It  was  demonstrated  that  a  suspension  of  the
magnetic Janus particles, which possess anisotropic magnetic susceptibility, forms different
structures in a precessing field depending on the field's precession frequency and angle [6].
Chain formation of superparamagnetic particles in a precessing magnetic  field was studied in
[7]. Precessing magnetic field are used for driving magnetic swimmers, for example, magnetic
dipoles with attached flexible tail [8,9].

Here we formulate model for single ferromagnetic particle with a finite coupling energy of the
magnetic moment with the body of the particle in a magnetic field. The regimes of particle
dynamics in the rotating magnetic field are investigated. As special case a superparamagnetic
particle in the precessing magnetic field is studied.

2. Model

We introduce single domain ferromagnetic particle with magnetic moment  m=me and easy
axis of magnetization n. Energy in external magnetic field H=Hh reads:

E=−mH e⋅h−½ KV (n⋅h)2 , (1)

where K is a constant of magnetic anisotropy and V is volume of the particle. We assume that
magnetic relaxation time is much smaller than the characteristic time of the particle motion,
so the magnetic moment is in equilibrium state determined by (K e=e×∂/∂ e) KeE=0. It gives

e×h=
2 H a

H
(e⋅n)n×e , (2)

where Ha=KV/2m. The dynamics of the easy axis is determined by the balance of viscous and
mechanical torques and reads (K n=n×∂/∂n)



−ζΩ−K nE=0 ;
d n
dt

=Ω×n , (3)

where ζ  is the rotational drag coefficient of the particle. We assume that particle is spherical.
Eq. (3) is the particular case of more general “egg-yolk” model proposed in [10,11], where it
reads ζΩ=−K nE−K e E .  In Eq. (3) internal magnetic relaxation is neglected (KeE=0).

From Eq. (2) it can be seen that e is in the plane defined by the vectors n and h and reads:

e=
H /H ah+2(e⋅n)n

H / H a(e⋅h)+2(e⋅n)2 , (4)

where  (e⋅n)2
=1−(2 H a / H )

2
[1−(e⋅n)2

](e⋅n)2.  From  [12]  we  know  that  in  the  range
H / H a<1 magnetic moment  e has one stable states, in the range H / H a>2 e has two stable
states, but in the range 1<H / H a<2 number of stable states (one or two) are determined by
angle between  n and  h.  In this  range of magnetic  field strength irreversible  jumps of the
magnetic moment can take place and should be taken into account, when the motion of the
particle  is  considered.  The  orientation  of  the  magnetic  moment  of  the  particle  is  found
minimizing dimensionless equation of energy (1):

Ê=−( H / H a)e⋅h−(n⋅h)2 , (5)
with has one or two minimums for e for fixed n·h.

We introduce dimensionless time t̃=ωH t , where ωH  is angular frequency of rotating magnetic
field. Using Eq. (4) the equation of motion of particle (2), can now be written in the form
(tilde is omitted henceforth):

dn
dt

=
ωa
ωH

C (n⋅h , H / H a ,ξ)[h−n(n⋅h)] , (6)

where ωa=KV / 2ζ. The function

C (n⋅h ,H / H a ,ξ)=
H / H a(e⋅n)ξ

2

H / H a(n⋅h)+2(e⋅n)ξ
, (7)

in  general  depends  on  history  due  to  hysteresis  of  vector  e.  Here  history  dependence  is
introduced by variable ξ, which has two values (e.g. 1 and 2) and changes its value in jumps
of e.

3. Rotating field

In a rotating magnetic field h=(cos t , sin t ,0) synchronous with field regimes, when particle
rotates with angular velocity ω=(0,0,1), d n/dt=ω×n, can be calculated from Eq. (6):

H /H a(e⋅n)
2
(ez⋅n)(n⋅h)

H / H a(n⋅h)+2(e⋅n)
=0 , (8)

We see that three types of synchronous regimes are possible:
• Planar regime, where ez·n=0
• Precession regime, where n·h=0
• Unstable stationary regime, where e·n=0

The existence intervals and stability analysis of these regimes can be found in [13]. It can be
found  that  besides  synchronous  regimes  there  exists  asynchronous  planar  regime.  The



analysis of this regime can also be found in [13]. In Table 1-2 and Fig. 1 the results of [13] is
reviewed.

Regime Existence interval

Synchronous planar regime (ez·n=0) ωH
ωa

<1 ∧
ωH
ωa

<
H
H a

Precession regime (n·h=0)
(
ωH
ωa )

2

>( H
H a

)
2

−( H
2Ha

)
4

∧
H
H a

<2

Asynchronous planar regime (ez·n=0) ωH
ωa

>1 ∨
ωH
ωa

>
H
H a

Table 1: Existence intervals of regimes of single domain ferromagnetic particle dynamics in
rotating magnetic field

Regime Stability interval

Synchronous planar regime (ez·n=0)
(
ωH
ωa )

2

>( H
H a

)
2

−( H
2Ha

)
4

∨
H
H a

<√2

Precession regime (n·h=0) H
H a

<√2

Asynchronous planar regime (ez·n=0)
∫
0

2π C (cosβ , H / H a ,ξ(β))

ωH /ωa−C (cosβ ,H / H a ,ξ(β))
d β>0

Table 2: Stability intervals of regimes of single domain ferromagnetic particle dynamics in
rotating magnetic field

Figure 1: Phase diagram. The solid line indicates boundary between regions where stability of
regime changes. In region I only asynchronous planar regime is stable. In region II only

synchronous planar regime is stable and dashed line in this region is boundary of existence of



unstable precession regime. In region III only precession regime is stable and dashed line in
this region is boundary of existence of unstable synchronous planar regime. In region IV

precession and asynchronous planar regimes are stable.

4. Precessing field

As a special case, when magnetic field strength H is large compared to anisotropy field H a,
the  particle  can  be  modelled  as  superparamagnetic  (H ≫H a).  In  this  case  e=h and
C (n⋅h , H / H a ,ξ)=n⋅h.

It  is  found  in  [14]  that  in  a  precessing  magnetic  field  h=(sin ϑcos t ,sin ϑsin t ,cos ϑ)
synchronous  and asynchronous  with  the  field  regimes  are  possible  for  superparamagnetic
particle. If we choose magnetically oblate particles (particles with negative ωa) than analysis
is the same as for prolate particle, but with negative time. That makes stable states unstable
and vice versa. The results of [14] is reviewed in Fig. 2

Figure 2: Phase diagram. The prolate superparamagnetic particle has a stable synchronous
regime in region I∪III, and the oblate superparamagnetic particle in region II∪III. The point
shows a codimension-2 bifurcation point with coordinates (2/√3,arccos(1/3)). The dashed line

is asymptote ϑ=arccos(1/√3) of the solid line.

5. Conclusion

It shows that synchronous and asynchronous regimes are possible for a particle with a finite
energy of the magnetic anisotropy in a rotating magnetic field. In the synchronous regime the
easy axis of the particle is in the plane of a rotating field at low frequencies (a planar regime)
and on the cone at  high frequencies  (precession regime).  The stability  of both regimes is
investigated and it is shown that precession regime is stable for the magnetic field strength
below the critical value. Taking into account irreversible jumps of the magnetic moment it is
shown that the planar asynchronous regime is unstable for the field strength below the critical



value.  In  addition  the  bifurcation  diagram  for  the  prolate  and  oblate  superparamagnetic
particles in precessing magnetic field has been shown. It generalizes results for the case of
rotating field. In spite differences in behaivior of prolate and oblate particles in the precessing
field, their bifurcation diagrams are identical expect for interchanged stable and unstable fixed
points.
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