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The interfacial instability of miscible magnetic fluids in a horizontal Hele-Shaw cell

under the action of a vertical magnetic field is studied numerically. The fingering at

the interface between the magnetic and non-magnetic fluids is induced by a uniform

external magnetic field greater than a critical value. The numerical results of the

simulation are compared with the experimental results.

I. INTRODUCTION

The studies on interfacial phenomenon between miscible magnetic fluids have been started

more than thirty years ago [1] extending the previous work on magnetostatic instabilities of

magnetic liquids in the Hele-Shaw cell for miscible fluids. Due to the dipolar interactions

between the nanoparticles, a demagnetizing field appears in the volume of the magnetic fluid.

As a result, the magnetic field is larger outside than inside. The ponderomotive force on the

magnetizable fluid is proportional to the concentration of magnetic particles and the local

gradient of the magnetic field strength. A gradient of magnetic field appears at the frontier:

this gradient is the origin of the destabilizing magnetic force. Hence, the theoretical model

of the magnetic micro-convection considers the Hele-Shaw flow in the Darcy approximation

[2] under the action of the ponderomotive forces due to the self-magnetic field of the fluid,

the equations for the magnetostatic field, and the diffusion equation for the concentration

of the magnetic nanoparticles.
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FIG. 1: Concentration snapshots of miscible magnetic and non-magnetic fluids in a Hele-Shaw

cell (a) Darcy model for Rayleigh number Ram = 1250, (b) Darcy model with viscous part for

Rayleigh number Ram = 1250, (c) experimental data for magnetic field strength B = 28 Oe, which

corresponds to Ram = 168

∂c

∂t
+ (u · ∇)c = D∆2c . (2)

The magnetostatic potential ψm is given by [3, 4]

ψm(r, t) =M0

∫
c(r

′
, t)K(r− r

′
, h)dS

′
, (3)

where K(r, h) = 1/ | r | −1/
√
| r |2 +h2 and the magnetization M(c) is proportional to the

concentration of the magnetic fluid c (M =M0c)

II. NUMERICAL SIMULATIONS

The equations Eq.(1)-(3) are put in dimensionless form by introducing the following

scales: length h, time h2/D, velocity D/h and magnetostatic potential M0h are solved

numerically in the vorticity-stream function formulation. The stream function ψ is de-

fined as ux = ∂ψ/∂y and uy = −∂ψ/∂x and the vorticity ω as ω = −∇2ψ. The growth

increment of perturbation of quiescent state depends on the magnetic Rayleigh number

Ram = M2
0h

2/12ηD and the smearing of the interface between the magnetic and non-

magnetic liquids. A Fourier spectral method is used as the basic scheme for numerical
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FIG. 2: (a) Maximal value of vorticity as a function of time for a magnetic Rayleigh number

Ram = 350 on a logarithmic scale. (b) The exponent of the power law α for the experimental data

given by (square) and numerical data (circle) for the magnetic Rayleigh numbers Ram.

simulations, the problem can be reduced to two algebraic equations for flow quantities and

a first-order ordinary differential equation in time for the concentration and is solved by

applying the linear propagator method and three-step Adams-Bashforth method.

In Fig.1 the qualitative comparison of characteristic concentration images between Darcy

(a), Darcy with viscous part (b) and experiment bright field intensity image (c) are shown.

A much better agreement of Darcy model and experimental results is reached when viscous

stress, tangential to the boundary velocity gradients, is taken into account.

The time dependence of the maximal vorticity for several values of the magnetic Rayleigh

number Ram is calculated to make a comparison with the experimental data. This depen-

dence allows us to obtain the evolution of the vorticity field during the development of the

magnetic micro-convection and its decay due to the diffusion of particles. It corresponds to a

rapid increase of the vorticity followed by its slow decay Fig.2(a). Experimental and numer-

ical data for the vorticity decay may be fitted with a power law ωmax ∼ t−α. The obtained

values of the exponent α are shown in Fig.2(b). The experimental and the numerically

obtained exponent α values correlate. Although, having a noticeable displacement, both

have small values for Ram close to the critical field and become clearly higher for greater

Ram values. The magnetic Rayleigh number Ram = M2
0h

2/12ηD of experimental data is

calculated with a diffusion coefficient D = 2.1 · 10−5 cm2s−1, which is estimated from the

critical field (Hc = 5.3 Oe [2]), and is close to a diffusion coefficient D = 2.8 · 10−5 cm2s−1

calculated from a magnetic fluid and water diffusion experiment measurements. This impre-
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cision together with the resolution limitations of the experimental vorticity measurements

play the main role for the differences of the comparison.

III. CONCLUSIONS

The proposed model of the magnetic micro-convection qualitatively describes the exper-

imental data on the development and decay of the magnetic micro-convection. The theo-

retical analysis for the Darcy model shows that a non-potential magnetic force at magnetic

Rayleigh numbers Ram greater than a critical value causes fingering at the interface between

the miscible magnetic and nonmagnetic fluids. Fingering with its subsequent decay due to

diffusion of particles significantly increases the mixing at the interface. The vorticity decay

rate dependence on Ram show a similar behavior for simulations and experiments. To verify

the differences, a more precise experimental study on vorticity formation must be carried

out.
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