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Abstract: The behaviour of a ferrofluid bridge between two cones and a cylinder in the 
magnetic field of a line conductor in the presence of a pressure drop is investigated. Here we 
consider a particular case of right circular coaxial truncated cones with different apex angles. 
A line conductor is also located on their axis. The cones intersect in a circle of the conductor 
radius. The possibility of the fluid shape hysteresis for a cyclic increase and decrease of the 
current and of spasmodic changes at certain values of the current is studied. 
 
1. Introduction 
 
The free surface of a ferrofluid changes its shape near a line conductor while the current is 
slowly changing. For some values of the current, hysteresis and spasmodic phenomena may 
be observed. For small magnetic fields in [1], the spreading of a ferrofluid drop along a wire 
in case of wetting was studied theoretically and observed in the experiment. In [2] the 
behaviour of a ferrofluid bridge between coaxial cylinders with a line conductor on their axis 
for both cases of wetting and non-wetting was investigated theoretically. Taking into account 
the results obtained in [1], the behaviour of a ferrofluid drop on a line conductor for any 
values of wetting angles and magnetic fields was developed in [3]. A ferrofluid drop on a line 
conductor with limiting conical surfaces in case of non-wetting was studied in [4]. We take 
into account the results obtained in [2], [4] and state the problem of a ferrofluid bridge 
between two cones and a cylinder in the magnetic field of a line conductor. It should be noted 
that the ferrofluid bridge considered in [2] cannot sustain any pressure drop in contrast to this 
problem where there is a pressure drop. 
 
2. Problem statement and its solution 
 
We consider a heavy, incompressible, homogenous, isothermal ferrofluid (V is the ferrofluid 
volume) between a cylindrical surface of the radius Rc and two limiting right circular 
truncated conical surfaces with different apex angles α1 and α2. All these surfaces are coaxial, 
and a line conductor of the radius r0 with the current I is located on their axis. The cones 
intersect in a circle of the conductor radius (fig. 1). In this geometry the ferrofluid bridge can 
sustain a pressure drop Δp = p1 – p2. The pressure p1 is maintained above the ferrofluid and 
the pressure p2 is maintained beneath the ferrofluid. The ferrofluid is immersed in a non-
magnetic liquid with the same density (the case of hydroimponderability). If the ferrofluid 
does not wet solid boundaries then 90˚ < θ1, θ2, θ3 ≤ 180˚, where θ1 is the wetting angle of the 
upper conical surface, θ2 – of the lower conical surface, θ3 – of the outer cylinder. If the 
ferrofluid wets solid boundaries then 0˚ ≤ θ1, θ2, θ3 ≤ 90˚ (the case θi > αi, i = 1, 2 is only 
considered). The ferrofluid has a free axially symmetric surface z = h(r), r2 = x2 + y2 (the axis 
z is directed along the axis of the conductor). In this geometry, the magnetic field of the 
conductor |H| is not deformed by the ferrofluid and |H| = H, H(r) = 2I/(cr), where c is the 
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speed of light in vacuum. We consider that for a ferrofluid with small concentration of the 
same ferromagnetic particles its magnetization Mf  can be described by the Langevin law as 
for paramagnetic gas: Mf (ξ) = MS L(ξ), L(ξ) = cth ξ − 1/ξ, ξ = mH/(kT), m = MS /n. Here MS is 
the saturation magnetization of a ferrofluid, m is the magnetic moment of one ferromagnetic 
particle, n is the number of ferromagnetic particles per unit volume of a ferrofluid, T is the 
fluid temperature, k is the Boltzmann constant, ξ is the Langevin parameter which 
corresponds to the current in a line conductor. 
 

 
a)        b) 

Figure 1: Ferrofluid bridge between coaxial conical and cylindrical surfaces in the magnetic 
field of a line conductor under a pressure drop in case of a) non-wetting and b) wetting 

 
We use the hydrostatic equation: 

,,,)( lfiHHMp iii ==++− 0gρ∇∇    (1) 
where the indexes f and l designate the ferrofluid and the non-magnetic liquid surrounding the 
ferrofluid (the magnetization Ml = 0), p is the fluid pressure, ρ is the fluid density, g is the 
gravitational acceleration. We also use the boundary condition on the free surface h(r): 
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where σ is the coefficient of surface tension and K is the mean curvature of the surface. The 
sign “+”(“−”) should be chosen when the non-magnetic liquid is situated above (beneath) the 
ferrofluid. 

From (1) and (2) we get the general, inhomogeneous, non-linear, second-order 
differential equation. In case of hydroimponderability, when ρf = ρl , we may reduce the order 
of this equation and get the general analytical solution for any axially symmetric shape of the 
ferrofluid free surface h(r) in any axisymmetric magnetic field in the dimensionless form [2]. 
Here we need to describe the upper contact surface of fluids h1

*(r*) and the lower contact 
surface of fluids h2

*(r*) separately in the dimensionless form: 
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The following dimensionless parameters are introduced: r* = r/r0 , Rc
* = Rc /r0 , hi

* = hi /r0 , 
ri

* = ri /r0 , i = 1, 2, H* = H/H0 = 1/r*, H0 = 2I/(cr0), ξ0 = mH0 /(kT), P1 = nkTr0 /σ, 



P(r*, ξ0) = ln [sh (ξ0H*)/(ξ0H*)]. Later, the signs “*” are omitted and parameters are 
considered as non-dimensional, unless otherwise specifically agreed. 

On contact lines of three media, for r = r1 and r = Rc, the Jung condition should be 
satisfied and it gives the following boundary conditions: 
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From (4) the constants BB1 and C1 may be determined as functions of r1. On contact lines of 
three media, for r = r2 and r = Rc, other boundary conditions hold true: 
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From (5) the constants BB2 and C2 may be determined as functions of r2. The constants 
D1 = h1 (Rc) and D2 = h2 (Rc) are determined from the following conditions: 
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The relation between the constants BB1 and B2B  follows from the condition of fluid equilibrium: 
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In turn, the variables r1 and r2 have to satisfy equation (7) and the conservation law of 
ferrofluid volume. 

It should be noted that for p1 > p2 in case of non-wetting, the ferrofluid bridge can take 
two different positions: to contact simultaneously the upper and the lower conical surfaces 
(fig. 1a) or to contact only the lower conical surface. In case of wetting, the ferrofluid bridge 
can take all three different positions: to contact simultaneously the upper and the lower 
conical surfaces (fig. 1b), to contact only the upper conical surface or to contact only the 
lower conical surface. If the ferrofluid contacts only the lower conical surface, then instead of 
(4) the following boundary conditions hold true: 
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If the ferrofluid contacts only the upper conical surface, then instead of (5) the following 
boundary conditions hold true: 
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3. Numerical simulation 
 
To simulate numerically the static shapes of the ferrofluid free surface, we fix the following 
values of the problem parameters: r0 = 5·10– 4 m, Rc = 50·10– 4 m, T = 300оK, 
Δp = 101.325 Pa, n = 0.19·1024 m– 3 (MS = 56.6·10– 4 T), σ = 20·10– 3 N/m, a1 = a2 = 5°. In 
case of non-wetting θ1 = θ2 = θ3 = 175°, and in case of wetting θ1 = θ2 = θ3 = 30°. 

By varying the parameter r1, for each value of the current ξ0 it is possible to calculate 
the ferrofluid shapes with the fixed volume V before we reach the value of current ξ0 = ξ break. 
At this value of current the surface h1(r) contacts the surface h2(r), the ferrofluid volume 
becomes minimal to bridge the gap between conical and cylindrical surfaces and the ferrofluid 
bridge breaks up (at the same time, in case of non-wetting the constants D1 = D2). However, at 
some critical value of current ξ0 = ξcr solution (3), which describes the static shape of the 
ferrofluid free surface, may stop existing earlier than the surface h1(r) contacts the surface 
h2(r). In this case, for some value of the radius r the absolute values |G1| and |G2| are equal to 
1 and the ferrofluid bridge breaks up unpredictably. 
 
4. Hysteresis and spasmodic phenomena 
 
We consider the dependence of the value z1 = h1(r1) on the current ξ0 for different values of 
the ferrofluid volume V in case of non-wetting (fig. 2a). For 0 < V < 2460 (for example, line 1 



for V = 1076 in fig. 2а) the dependence z1 = z1(ξ0) at first monotonically increases, and later it 
has a range of values with no physical sense, for which the ferrofluid tends to the conductor 
while the current is decreasing. For V = 2460 the line z1 = z1(ξ0) stops being simply connected: 
the lower part has its former state, but a new second branch of solutions appears as a dot 
(line 2 in fig. 2а). For 2460 < V < 9580 (for example, line 3 in fig. 2а for V = 7925) the 
dependence z1 = z1(ξ0) is biconnected and multivalued, one value of the current ξ0 may be 
associated with one, two or three values of z1. For V = 9580 the dependence z1 = z1(ξ0) 
becomes again simply connected, the lower and the upper solutions grow together (line 4 in 
fig. 2а). For 9580 < V < 17770 (for example, line 5 in fig. 2а for V = 16772) the dependence 
z1 = z1(ξ0) continues to be simply connected and multivalued. For V = 17770 the dependence 
z1 = z1(ξ0) has an inflection point and it becomes single-valued (line 6 in fig. 2а). For 
17770 < V < 40720 (for example, line 7 in fig. 2а for V = 26828) the dependence z1 = z1(ξ0) 
continues to be simply connected and single-valued. The volume V = 40720 (5·10– 6 m3) 
corresponds to the maximal ferrofluid volume, which can be placed in the gap between 
conical and cylindrical surfaces. The lines in fig. 2а come abruptly to an end when the 
ferrofluid bridge breaks up either predictably at the current ξ0 = ξ break, or unpredictably at the 
current ξ0 = ξcr. 

 

 
a)           b) 

Figure 2: Dependences a) z1 = z1(ξ0) in case of non-wetting and b) z2 = z2(ξ0) in case of 
wetting for different values of the volume V. 

 
In case of wetting the dependence of the value z2 = h2(r2) on the current ξ0 for different values 
of the ferrofluid volume V is shown in fig. 2b. We can see that for all range of the volumes 
0 < V < 40720 the dependence z2 = z2(ξ0) decreases monotonically. The lines in fig. 2b come 
abruptly to an end at the critical values of current ξ0 = ξcr. Hence, in case of wetting for these 
parameters of the problem hysteresis and spasmodic phenomena are not observed. 

In fig. 3 we consider in detail the dependence z1 = z1(ξ0) in case of non-wetting, 
namely line 5 for V = 16772 from fig. 2а. While the current is increasing quasistatically from 
ξ0 = 0 to ξ02 = 1.042 (36 А), the value z1 increases monotonically from z1 = – 11.4 (– 57·10–

 4 m) to z1 = – 5.7 (– 28.5·10– 4 m), in other words the ferrofluid moves to the region of bigger 
magnetic fields. At the current ξ02 the ferrofluid jumps from the point z1 = – 5.7 on the lower 
conical surface to the point z1 = 2.2 (11·10– 4 m) on the upper conical surface. Later, while the 
current is increasing quasistatically from ξ02 to ξbreak = 1.537 (53 А), the value z1 increases 
monotonically from z1 = 2.2 to z1 = 14.3 (71.5·10– 4 m). At the current ξbreak the ferrofluid 
bridge breaks up and all ferrofluid volume turns into a drop on conical surfaces. However, if 
the current does not reach the value ξbreak and the ferrofluid bridge does not break up, then 



while the current is decreasing from some value ξ02 < ξ0 < ξbreak to the value ξ01 = 0.94 
(32.4 А), then the value z1 decreases monotonically to z1 = 0.1 (0.5·10– 4 m). At the current 
ξ01 the ferrofluid jumps from the point z1 = 0.1 on the upper conical surface to the point   
z1 = – 8.4 (– 42·10– 4 m) on the lower conical surface. Later, while the current is decreasing 
quasistatically from the value ξ01 to ξ0 = 0, the value z1 decreases monotonically from      
z1 = – 8.4 to z1 = – 11.4. Hence, in case of non-wetting the ferrofluid free surface can change 
spasmodically and the shape hysteresis may be observed, that is the change of the ferrofluid 
shape, while the current is increasing, does not coincide with the change of the ferrofluid 
shape, while the current is decreasing. 
 

 
Figure 3: The dependence z1 = z1(ξ0) for V = 16772 in case of non-wetting. 

 
5. Conclusion 
 
It is shown that the presence of conical surfaces allows the ferrofluid bridge in the magnetic 
field of a line conductor to sustain a pressure drop. In case of non-wetting, spasmodic and 
hysteresis phenomena may be presented for some ferrofluid volumes and currents in a line 
conductor. In case of wetting, such phenomena are not found. The ferrofluid bridge breaks up 
either at the critical value of current, for which the static shape of the ferrofluid free surface 
stops existing, or at the value of current for which the ferrofluid volume is minimal to bridge 
the gap between conical and cylindrical surfaces. Presence or absence of hysteresis and 
spasmodic behaviour of a ferrofluid shape should be taken into account for the construction of 
different devices with controlled ferrofluid volumes, in which the magnetic field is changed 
periodically, such as seals, interrupters, valves, batchers. 
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