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Abstract: A series of Monte Carlo and molecular dynamics simulations have been performed to 
determine equilibrium concentration profiles of dipolar hard sphere system in a wide range of 
coupling constant values and in the presence of the strong gravitational field. These data have 
been used to estimate the diffusion coefficient of colloidal particles and to determine 
applicability limits of the most recent analytical models for this coefficient. No signs of the first 
order phase transition predicted by all the models were observed in the simulation. 
 
1. Introduction 
 
One of the most important problems that must be handled in order to create a highly stable 
magnetic fluid is the problem of concentration stratification. Its essence is that in the course of 
time an initially homogeneous fluid becomes spatially inhomogeneous with respect to the 
magnetic phase concentration due to the gravitational sedimentation and magnetophoresis (the 
motion of particles under the action of nonuniform magnetic field). The only mechanism that 
prevents stratification in the absence of convective motion is the gradient diffusion of magnetic 
particles in fluid. Generally, to obtain the concentration profile of the fluid in a cavity one must 
solve a boundary-value problem including Maxwell’s equation for magnetic field and the 
dynamic mass transfer equation with consideration for terms responsible for magnetophoresis 
and sedimentation. The approximation of a dilute solution (when the volume fraction of particles 
is small compared to unity) makes it possible to separate the magnetic and diffusion parts of the 
boundary-value problem and to write the diffusion equation, which is linear in terms of the 
particle concentration and correctly considers magnetophoresis, sedimentation and gradient 
diffusion [1]. But in the case of concentrated fluids a description of the segregation process is a 
really challenging task due to the interparticle interactions. Today, there are quite a few works on 
mass transfer in magnetic fluids, which take into account steric, hydrodynamic and also 
magnetodipole interactions. For example, a formula for the chemical potential of magnetic fluid 
describing the excluded volume effect was derived by Cebers [2]. A large success in the problem 
of taking into account steric interactions was also achieved by Buevich et al. [3].  They derived a 
formula for the gradient diffusion coefficient in the framework of Carnahan–Starling 
approximation for the hard sphere fluid equation of state. Besides, they introduced the 
correction, linear in concentration, for the effective attraction of spherical dipoles. The theory of 
diffusion processes in magnetic fluid that takes into account both steric and magnetodipole 
interactions was developed by Morozov [4] and Bacry with coauthors [5]. The main drawback of 
this theory is the geometry limitation of an infinite flat layer. Perhaps one of the most complete 
mass transfer equations has been proposed in Ref. [6]. This equation describes the temporal and 
spatial variations of the volume fraction φ of single-domain colloidal particles and, in the 
absence of convective flows, can be written as follows: 
 

                 (1) 
 
Here, K(φ) = b/b0, where b and b0 are the particle mobility in the magnetic fluid and carrier fluid, 
respectively, D0 = b0kT is Einstein’s value of the diffusion coefficient for a Brownian particle in 
dilute solution, μ0 = 4π×10−7H/m, L(ξ) = coth(ξ) − 1/ξ is the Langevin function, and 



ξe = μ0mHe/(kT) is the Langevin parameter, He is the effective magnetic field, which depends 
both on the applied field and the local concentration,  λ = μ0m2/(4πd3kT) is the coupling constant  
(the ratio of the magnetodipole interaction energy to the thermal energy), m and d are the 
magnetic moment and full diameter of the particle (including a protection shell), respectively, kT 
is the energy of the thermal motion, Gγ is the gravitational parameter, e is the unit vector in the 
direction of the gravitational field, and G(λ,φ) is the contribution of magnetodipole interactions 
to the free energy density referred to the density of the thermal energy of the Brownian particle 
motion. The first term in the Eq. (1) represents magnetophoresis. The expression in square 
brackets can be considered as an effective diffusion coefficient of colloidal particles: 
    

                                                                             (2) 
Here, the first term is responsible for the gradient diffusion, the second one – for the steric 
interactions (Carnahan–Starling approximation) and the last one takes into account 
magnetodipole interactions.  The main practical difficulty associated with Eq. 1 is a need for 
G(λ,φ) expression. Originally authors of Ref. [6] have used interpolation formula for the free 
energy virial expansion in terms of φ calculated up to φ2:  
 

 

.         (3) 
 
Another, more promising expression was recently introduced in Ref. [7]. By applying it to the 
case of diffusion coefficient we will get: 
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 . 
Finally, one more formula for D has been proposed in Ref. [8].  Instead of using free energy 
approach authors directly determine a magnetodipole term heuristically: 
 

                                                                        (5) 
Obviously, the model is significantly less strict but it can be easily extended to the case of 
partially aggregated system. Eqs. (3), (4) and (5) work well in the area of moderate values of the 
interaction energy (λ < 2) and volume concentration (φ < 0.4). However, their extrapolation to 
the area of high energies and concentrations, which presents considerable interest for engineering 
applications, might be a risky step. The purpose of this work is to obtain reliable estimates for 
the diffusion coefficient of strongly coupled dipolar hard sphere system by means of the 
numerical simulation and to use these data in order to compare mentioned analytical models and 
determine their limits of applicability.    
 
2. Simulation details 
 
Simulated system is the finite-size circular cylinder filled with N dipolar spheres. The height of 
the cylinder is Z (in units of particle diameter d). Cylinder is vertically placed in the gravitational 



field Gγe. Cylinder axis (z-axis) is directed against e. Applied magnetic field is absent. In our 
work we use Monte Carlo (MC) and molecular dynamics (MD) methods to obtain equilibrium 
concetration distribution profiles of particles along z-axis at given λ and φ. In the case of MC 
simulation we use a standard Metropolis algorithm for the NVT ensemble. To get the NVT 
ensemble in MD simulation we use the Langevin dynamics approach. Potential energy of the i-th 
particle is given by expression: 
 

                   ,                (6) 
where μi is the unit vector in the direction of particle magnetic moment, rij is the distance 
between centers of the i-th and the j-th particles (in units of d), Uij

SR is a short-range interparticle 
potential, for MC this is hard-sphere potential UHS(rij) = ∞ if rij < 1 and 0 otherwise, for MD this 
is truncated and shifted modified Lennard-Jones potential UMLJ(rij) = 4ε(1/rij

48 - 1/rij
24 + 1/4) if 

rij < 21/24 and 0 otherwise. Interaction with a cylinder boundary is considered as a short-range 
interaction with an image particle placed equidistantly on the other side of a boundary. The 
equations of motion for the i-th particle are: 
 
                               ,          ,                              (7) 

where m0 is the mass of particle, vi (ωi) is the linear (angular) velocity, Fi = -∇Ui (τi) is the 

conservative force (torque) acting on particle, γT (γR) is the translation (rotational) friction 
coefficient, ζT

i (ζR
i) is the random Brownian force (torque) acting on the particle, its component 

are drawn independently from Gaussian distribution with moments <ζT
i> = 0, <ζR

i> = 0, 
<ζT

i(t)ζT
j(t’)> = 6kTγTδij δ(t - t’), <ζR

i(t)ζR
j(t’)> = 6kTγRδijδ(t - t’). We determine the concentration 

profile of the system by dividing cylinder into equal horizontal layers with a height equals to one 
particle diameter and calculating average volume fraction for each layer. To find a link between 
profiles and the diffusion coefficient we use the equilibrium condition derived from Eq. (1):  
∂φ/∂z = -φGγ/(D/D0K(φ)). To ensure the system has reached equilibrium we perform every 
simulation with two types of initial states: 1) homogeneous particle distribution; 2) most of the 
particles are concentrated on the bottom of the cylinder in a thin layer four times lower than Z. 
Typical simulation parameters are:  N = 1000 for MC and N = 1024, 8192 and 16384 for MD, 
φ = 0.06, 0 ≤ λ ≤ 8, Z = 20, GγZ = 5,  ε/kT = 1, MD time step ∆t = 0.002(m0d2/ε)0.5, 
γT = 10.0(m0ε/d2)0.5, γR = 3.0(m0εd2)0.5, number of simulation steps is 106 (both for MD and MC; 
the first 5×105 are rejected).   
 
3. Results and discussion 
The results achieved for the range λ ≤ 5 seem to be reliable. Equilibrium profiles here depend 
weakly on the initial state, number of particles and simulation method. Some examples of these 
profiles are shown in Fig. 1. To estimate the error between analytical theories and the numerical 
data we use the coefficient of determination R2.  If (yi, xi) are numerical data,  is their average 
and y(x) = f(x) is the model function, R2 might be written as follows: 
 

                                                                                                      (8) 
 
R2 = 1 means that the match is perfect, R2 = 0 means that model function describes data no better 
than a straight line y(x) = . The dependences of  R2 on λ for Eqs. (3), (4) and (5) are shown in 
Fig. 2. For D1 and D2 the error starts to arise after λ ≈ 3 and for D3 after λ ≈ 3.5. But for the last 



two models the decline of R2 is far less abrupt. Declines are obviously correlated with the critical 
areas where theoretical models predict the phase separation of the system. For every model there 
exist a critical point (λ*, φ*) after which the diffusion coefficient becomes negative. For Eq. (3) 
this is (λ* ≈ 4.2, φ* ≈ 0.03), for Eq. (4) (λ* ≈ 3.5, φ* ≈ 0.05), for Eq. (5) (λ* ≈ 4.1, φ* ≈ 0.06). 
After reaching this point the system becomes unstable and stratifies into two phases, weakly and 
strongly concentrated (phase transition “gas – liquid”). Fig. 1(b) shows examples of such a 
critical stratification. It also shows that at λ = 5 the agreement between D3 and simulation results 
is good for sufficiently high local concentrations (outside the critical area). No signs of phase 
transition were observed in the numerical simulation for 6 ≤ λ ≤ 8 as well. But it should be 
mentioned here that for this area of extremely strong magnetodipole interactions the 
equilibration time rises significantly and so does the simulation error. This issue is not so crucial 
in the case when initial state of the system is a concentrated layer. But still we believe that this 
range of coupling constant values should be investigated more accurately. Finally, we have 
performed some additional MC simulations for average concentrations larger than φ = 0.06 in 
order to directly estimate the diffusion coefficient of the colloidal particles from calculated 
profiles. Resulting coefficient for λ = 5 is shown in fig. 3 along with D1, D2 and D3. Simulation 
points in figure are approximated with 
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Figure 1: static concentration profiles in a vertical cylinder of finite height placed in the gravitational 
field. The magnetic field is absent. <φ> = 0.06. Curves correspond to analytical models and markers –

to numerical results. In fig. (a): curves 1 correspond to λ = 1, curves 2 to λ = 2, curves 3 to λ = 3. 
In fig. (b) λ = 5. 



   (9)  
 
4. Conclusion 
In this work we have performed a series of Monte Carlo and molecular dynamics simulations to 
determine equilibrium concentration profiles of strongly coupled hard sphere system in the 
gravitational field and in the absence of magnetic field. For λ ≤ 5 we have achieved sufficiently 
accurate results and have used them to analyze three theoretical expressions for the diffusion 
coefficient of interacting magnetic particles (D1, D2 and D3). Model D1 doesn’t match the 
numerical data at λ > 3. Model D3 works well even at λ = 5 for high local volume fractions 
φ > 0.22, but for the lesser concentrations, where model predicts a negative diffusion coefficient 
and the “gas – liquid” phase transition, the agreement is poor. Theoretical curves for D2 are also 
close to numerical results for sufficiently high local concentrations. No signs of the phase 
transition were observed in simulations. However, the precision of results for 6 ≤ λ ≤ 8 is lower 
and this area should be the object of further investigations. 
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Figure 2: Coefficient of determination R2

versus λ for different models. The closer R2 to
unity the better model approximates numerical
data (MD, <φ> = 0.06, N = 8192).   
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Figure 3: Diffusion coefficient versus local
volume fraction for different models. λ = 5.
Dots correspond to num. data (MC, N = 1000),
curve 1 to Eq. (3), 2 to Eq. (4), 3 to Eq. (5), 4
to Eq. (9).


