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Abstract: We consider an idealized model of ferrofluid saturated porous medium composed 

of microscale non-magnetic inclusions with simple geometry. The application of 

homogeneous magnetic field induces complicated pattern of internal demagnetizing fields 

owing to the difference in magnetic permeability. In turn, the imbalance of ferroparticle 

concentration is created by non-uniform heating and associated colloidal thermophoresis. 

Numerical simulations of magnetosolutal microconvection show significant intensification of 

pore-scale mixing and appearance of solvent flux in the direction of temperature gradient. 

 

1. Introduction 

 

Ferrofluids – colloidal solutions of magnetic nanoparticles – exhibit pronounced Soret 

effect, i.e. colloidal thermophoresis. The influence of magnetic field on the drift of colloidal 

particles attracts interest as a means of control and intensification of mass transport in these 

media. While theory predicts that in bulk solutions the direct dependence of molecular mass 

transport coefficients on homogeneous magnetic field is weak [1]-[3], specific 

microconvective phenomena, i.e. magnetic solutal microconvection, may appear [4]-[5] 

causing significant intensification of mass transfer. Recent experimental evidence [6]-[7] 

suggests that magnetic phenomena are also quite significant in porous environments or 

membranes resulting in considerable attenuation of the thermophoretic separation due to 

enhanced mixing. It is hypothesized that similar magnetic microconvection may be partially 

responsible for this effect [8]. 

When magnetic field is applied to a ferrofluid saturated porous medium the jump of 

magnetic permeability across the boundary of non-magnetic inclusions may cause the 

appearance of significant gradients of internal magnetic field in the vicinity of the interface. A 

system of such inclusions thus forms markedly nonhomogeneous internal magnetic field 

within the porous environment. In turn, in the conditions of non-uniform heating the strong 

colloidal thermophoresis induces the formation of corresponding gradients of ferroparticle 

concentration. Both the appearance of the spatial non-homogeneity of the distribution of 

dispersed magnetic phase and the internal magnetic field contribute to the formation of the 

associated non-potential magnetosolutal buoyant force, which may entrain the ferrofluid and 

create pore-scale magnetosolutal microconvection. Apart from pore-scale microconvective 

circulations [8]-[9], the formation of integral flow is possible in the vicinity of the inclusions 

[8]. 
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Figure 1: Scheme of the arrangement – non-magnetic cylindrical elements immersed in 

ferrofluid, temperature gradient and magnetic field are applied across the porous structure 



Here we report preliminary results of numerical simulations of pore-scale 

magnetosolutal microconvection in geometrically simple model of porous media. We create a 

1D arrangement of non-magnetic microscale cylinders immersed in ferrofluid (Fig.1). The 

porosity of the system is ε=1-π/l
2
. A temperature gradient is applied across the structure and 

homogeneous external magnetic field is imposed in the same direction. 

 

2. Magnetic microconvection 

 

The magnetic force density acting on ferrofluid due to magnetic field is expressed by 

Kelvin body force term F=μ0(M∇)H with M – magnetization of ferrofluid and H – magnetic 

field. Assuming M=χ(c,H)H, where χ(c,H) – magnetic susceptibility at given mass 

concentration and magnetic field, and with linear relationship for the magnetic susceptibility 

χ(c,H)=χ0(1+χc△c), where △c=c-c0, c0 – reference mass concentration, χc=1/c0 and χ0 – 

susceptibility at reference parameters, the non-potential part of the force density becomes 

F=   ΔHΔHh 0000 2HcHc   with △H=H-H0, H0=H0h – reference magnetic field, h 

– unit vector. Thus variation of ferroparticle concentration and magnetic field can produce 

magnetic convection in ferrocolloid.  

The diffusive dynamics of colloidal nanoparticles is very slow and are only relevant 

on submillimetre lengthscales. In turn, the Schmidt number Sc=η(ρD)
-1

, where η and ρ – 

viscosity and density of ferrocolloid, D – diffusivity of ferroparticles, expresses the ratio of 

momentum and mass diffusivities and is of the order 10
4
-10

5
. The magnetosolutal 

microconvection then is creeping convection. Introducing characteristic scales for length L, 

time L
2
D

-1
, magnetic field H , concentration perturbation c  the dynamics of the 

ferrocolloid is described by dimensionless Stokes equation 

    0 δHδHhu Hc rcRmp  (1) 

and the continuity condition 0 u . Here 02HHrH  typically does not exceed 5% and 

is disregarded. The magnetosolutal Rayleigh number is   HcDLHRm cc 
12

000  . 

 In non-isothermal ferrocolloid the linearized mass flux due to diffusion and 

thermophoresis is   TDScccDc T 00 1uJ  [10], where ST is Soret coefficient. For 

now we neglect magnetophoretic contributions. Introducing the thermal scale 

  TSccc T  00 1  the normalized concentration dynamics equation 

  Tccc
t





u  (2) 

The Lewis number Le=αD
-1

 characterizing the ratio of thermal and mass diffusivities is also 

very large in ferrofluids. Thus, the temperature dynamics is much faster than that of 

concentration and magnetosolutal microconvection does not influence the distribution of 

temperature. We impose the temperature gradient gradT and calculate LT  gradT . 

A non-magnetic cylinder immersed in ferrofluid with magnetic permeability 

00 1    and placed in homogeneous magnetic field creates around itself magnetic 

perturbation δH . In dimensionless form (the radius of the cylinder is assumed as length scale 

L) 
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where r and Θ, er and eΘ – cylindrical coordinates and basis vectors, 
0

0

1

1


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0HKH H . We calculate magnetic perturbation produced by an array of non-magnetic 

cylinders directly from Maxwell’s equations, but the result corresponds to a superposition of 

2D dipoles (3). 

 For typical ferrofluid parameters (ST=0.1K
-1

, η=0.001Pa s, D=2·10
-11

m s
-2

, c0=0.15, 

particle diameter 8 nm, particle spontaneous magnetization 5·10
5
 A m

-1
), external field 0.1T 

and imposed temperature gradient corresponding to a temperature difference of 20K applied 

across a 1mm thick porous membrane the magnetosolutal Rayleigh number in the vicinity of 

cylindrical inclusion with radius 2μm reaches Rmc=50. This is enough to cause significant 

microconvective particle transfer and we use this value in simulations. 

 

3. Results 
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Figure 2: Case 1 simulation (ε=0.8, fixed concentration gradient), from top to bottom – 

perturbation of magnetic field H, plot of averaged magnetic force <F>
β
, streamlines of 

velocity u, plot of averaged velocity <u>
β
, plot of the gradient of averaged pressure -<p>

β
 

 

We start from initial concentration distribution c=-x, which corresponds to a stationary 

stratification created by temperature T=x. We have performed two series of simulations: in 

the first case we solve only the Stokes equation and the initial concentration distribution is not 

allowed to change (case 1). As expected, the calculated distribution of magnetic field 

perturbation H=h·δH is highly inhomogeneous (Fig.2) and so is the magnetic force 

HcRmc F . In order to reveal the macroscopic structure of the magnetic forces we perform 

spatial averaging. The correct average in periodic porous structures is the cellular average 

across a unit cell [11]. Interestingly, the averaged magnetic force density <F>
β
 vanishes in the 

bulk of the porous structure and only remains in the immediate vicinity of the membrane 

surface, reaching sharp maximum within approximately a single period of the porous structure 

at both ends of the membrane. While the averaged magnetic force is well localized, its 

maximum value is proportional to the value of concentration at both ends of the membrane. 



So, when a concentration gradient is applied across the porous membrane, the total magnetic 

force is proportional to the thickness of the membrane. 

In the second series of calculations we solve also the concentration equation, advancing to the 

stationary/quasistationary state (case 2). In this case, the averaged concentration gradient 

decreases within the porous membrane (Fig.3) due to the change of porosity. In turn, the 

distribution of the averaged magnetic force becomes asymmetric with respect to the midpoint 

of the membrane. A component of the averaged magnetic force appears within the bulk of the 

membrane counteracting the pressure difference created by the forces in the vicinity of the 

membrane surface. These are the consequences of convective dispersion of concentration 

within the porous membrane. It can be expected that in 2D membranes these effects may lead 

to instabilities and oscillations. 
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Figure 3: Case 2 simulations (ε=0.8, concentration can change), from top to bottom – plot of 

the gradient of averaged pressure -<p>
β
, plot of averaged magnetic force <F>

β
. 

 

In the framework of Darcy theory the relationship between the averaged quantities should 

hold in the bulk of the porous membrane [11] 

 



p

K
u  (4) 

where K is the permeability tensor, which we calculate by solving the closure problem 

numerically for a unit cell [11]. In the series of calculations when the concentration gradient is 

fixed (case 1) the averaged magnetic force <F>
β
 vanishes within the porous structure. That is 

why it is absent from (4).  
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Figure 4: Results of simulations: left – plot of -<p>

β
 and K

-1
<u>

β
 for different porosities 

(for case 1); middle: (a) <u>
β
 (case 1), (b) <u>

β
 calculated from (4) (case 1),  

(c) plot of 
-1

<u>
β
 (case 2); right – plot of <c>

β
 within membrane (case 2) 

The calculated quantities 


 uF
1~  K  and -<p>

β
 are plotted in Fig. 4 (left) with respect to 

the porosity  of the membrane. While F
~

 is closely parabolic, the dependence of the averaged 



pressure gradient is mostly linear. Despite the difference the Darcy law (4) acceptably 

captures the relationship between averaged velocity and pressure (Fig. 4, middle). 

In the second series of calculations (case 2) due to the decrease of the concentration gradient 

within the membrane the averaged velocity decreases as compared with the unperturbed case 

(case 1). The magnitude of the concentration gradient within the membrane in this situation is 

proportional to the porosity  (Fig.4, right). Plotting the quantity 
-1

<u>
β
 (Fig.4, middle), it 

corresponds to the magnitude of the averaged velocity <u>
β
 in the unperturbed case (case 1). 

This correspondence remains up to rather large values of porosity. The little difference can be 

attributed to convective dispersion within the membrane. 

Starting from a certain value of porosity (≈0.85) the dependence experiences a discontinuity 

and the averaged velocity begins do decrease. This happens due to the establishing of the 

instability of the flow. The symmetrical configuration is replaced by the asymmetrical one 

and further increasing the porosity (>0.95) we observed periodic oscillations. 

 

4. Conclusions 

 

We have performed pore-scale numerical simulations of ferrofluid magnetosolutal 

microconvection in 1D ordered porous membranes composed of cylindrical elements. The 

imbalance of concentration was created by thermophoretic separation induced by a 

temperature gradient. The application of external magnetic field creates highly 

inhomogeneous distribution of magnetic force within the membrane, which nevertheless 

possesses well-defined macroscopic structure. A pressure difference appears across the 

membrane driving the flow of ferrofluid in the direction of the temperature gradient. We show 

that interpretation of the results of pore-scale simulations in the framework of the Darcy 

theory is possible, although errors as high as 30% can take place in some cases. 
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