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Abstract: We present an improved phase-shift flowmeter that has a significantly reduced sensitivity
to the variation of the electrical conductivity of the liquid metal. Two simple theoretical models of
flowmeter are considered where the flow is approximated by a solid body motion of finite-thickness
conducting layer. In the first model, the applied magnetic field is represented by a harmonic stand-
ing wave. In the second model, the sending coil is approximated by a couple of straight wires
placed above the layer. We show that the effect of electrical conductivity can strongly be reduced
by using the phase shift between the sending coil and the upstream receiving coil to rescale the
measured phase shift between two receiving coils.

1 Introduction
This paper is concerned with further development of a recently invented AC induction flowmeter for
liquid metal flows based on phase shift measurements [1, 2]. The flowmeter operates by measuring
the phase disturbance caused by the flow of liquid metal in an applied ac magnetic field. The
main advantage of the phase-shift flowmeter is the robustness to external perturbations compared
to measurements of the amplitude used by conventional eddy-current flowmeters. However, the
phase disturbance depends not only on the velocity of liquid but also on its electrical conductivity.

The aim of this work is to reduce the dependence of the flow-induced phase shift measurements
on the electrical conductivity of liquid. The basic idea is that not only the liquid flow but also
the alternation of the magnetic field itself gives rise to the phase shift in the induced magnetic
field. The current version of the flowmeter employs only the former effect. The latter effect, which
gives rise to phase shifts between the sending and receiving coils, is dependant on the conductivity
of the liquid. Therefore it may be used to compensate for the effect of conductivity on the flow-
induced phase shift. The feasibility of such an approach is investigated using two simple theoretical
models of the phase-shift flowmeter, where the flow is approximated by a solid body motion of a
finite-thickness conducting layer. In the first model, the applied magnetic field is represented by
a harmonic standing wave. In the second model, the sending coil is approximated by a couple of
straight wires placed above the layer.

2 Basic Equations
Consider a medium of electrical conductivity σ moving with the velocity v⃗ = e⃗xV in an ac magnetic
field with the induction B⃗ alternating harmonically with the angular frequency ω . The induced elec-
tric field follows from the Maxwell-Faraday equation as E⃗ = −∇⃗Φ− ∂t A⃗, where Φ is the electric
potential, A⃗ is the vector potential and B⃗ = ∇⃗× A⃗. The density of the electric current induced in the
moving medium is given by Ohm’s law

j⃗ = σ(E⃗ + v⃗× B⃗) = σ(−∇⃗Φ−∂t A⃗+ v⃗× ∇⃗× A⃗).
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Figure 1: Model of a conducting layer of thickness 2H in the external magnetic field represented by
a standing harmonic wave (a). Phase distribution over a half-wavelength of the applied magnetic
field at various dimensionless velocities defined by Rm (b).

Assuming the ac frequency to be sufficiently low to neglect the displacement current, Ampere’s
law j⃗ = 1

µ0
∇⃗× B⃗ leads to the following advection-diffusion equation for the vector potential

∂t A⃗+(⃗v · ∇⃗)A⃗ =
1

µ0σ
∇2A⃗, (1)

where the gauge invariance of A⃗ has been used to specify the scalar potential as Φ = v⃗ · A⃗ −
1

µ0σ ∇⃗ · A⃗. We now consider an applied magnetic field varying in time harmonically as A⃗0(⃗r, t) =

A⃗0(⃗r)cos(ωt), which allows us to search for a solution in the complex form A⃗(⃗r, t) = ℜ
[
A⃗(⃗r)eiωt

]
.

Equation (1) for the amplitude distribution of the vector potential takes the form

iωA⃗+(⃗v · ∇⃗)A⃗ =
1

µ0σ
∇2A⃗. (2)

We focus now on a simple 2D externally applied magnetic field, which is invariant along the unit
vector ε⃗. Such a magnetic field can be specified by a single component of the vector potential
A⃗ = ε⃗A which leads to the boundary conditions [A]S = [∂nA]S = 0, where [ f ]S denotes the jump of
quantity f across the boundary S where∂n ≡ (⃗n · ∇⃗) is the derivative normal to the boundary.

We start with a simple model where the conducting medium is a layer of thickness 2H shown
in Fig. 1(a), and the applied magnetic field is a harmonic standing wave with the vector potential
amplitude given by

A⃗0(⃗r, t) = e⃗zA0(⃗r, t) = e⃗zÂ0(y)cos(kx)cos(ωt),

where k is the wave number in the x-direction. We choose the half-thickness H as the length scale
and introduce a dimensionless ac frequency ω̄ = µ0σωH2 and the magnetic Reynolds number
Rm = µ0σV H. The latter represents a dimensionless velocity. It is important to note that this key
parameter depends on the product of the physical velocity and electrical conductivity. The full
derivation of a solution based on the above and its continuation to a external field generated by a
couple of straight wires is to be found in [2].
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Figure 2: The phase sensitivity (a) and the relative phase sensitivity (b) versus the dimensionless
frequency ω̄ at various horizontal observation positions below the layer for k = 1

3 Numerical Results
Single Harmonic of the magnetic field

Let us start with the original phase-shift flowmeter as a basis for the following development. Figure
1(b) shows the distribution of the phase between two nodes of the applied magnetic field along the
bottom of the layer. For the layer at rest, the phase distribution is piecewise continuous with jumps
in value at the wave nodes. These discontinuities are smoothed out by the motion of the layer and
shifted further downstream as Rm is increased. Figure 1(b) also shows an important feature of the
phase variation, that the strongest variation occurs at the right, immediately downstream of a node
whereas the variation to the left, upstream of a node, is relatively weak, especially at lower values
of Rm.

The variation of phase φ with Rm at low velocities can be characterized by the phase sensitivity
K = π−1 ∂Rmφ|Rm=0 . The dependence of this quantity on the dimensionless frequency ω̄ is plotted
in Fig. 2(a) for several observation points. As ω̄ has a similar effect to Rm the reduction can
be achieved by scaling the phase variation with the phase itself, which leads to the relative phase
sensitivity

Kr = πK/φ. (3)

As seen in Fig. 2(b) with small ω̄ this quantity tends to constant for given observation point.
Although the relative phase sensitivity is not completely independent of ω̄ it can be seen that at
lower values of ω̄ it varies much less than the unscaled phase sensitivity shown in 2(a). Following
this idea the effect of conductivity can be reduced by scaling the phase shift between the voltages
measured by the two receiving coils with the phase shift between the sending and receiving coils.
Since, as shown above, the phase shift upstream of a node is less affected by the motion of the
layer then downstream of a node, the upstream measurement shall be used to scale the phase shift
between the receiving coils. Rescaling the phase shift directly with the reference phase, as done for
sensitivity, is not sufficient as according to equation (3) the result still remains proportional to Rm.
Since at small ω̄ the reference phase varies directly with ω̄ which, similar to Rm, is proportional to
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Figure 3: Rescaled phase shift ∆2φ(a) and ∆3/2φ (b) between two observation points placed be-
low the layer at ±x = 0.3 versus the relative velocity Rm/ω̄ for k = 1 and various dimensionless
frequencies ω̄.

conductivity. The following scaling by the square of the reference phase will eliminate conductivity

∆2φ =
∆0φ
φ2 , (4)

where ∆0φ = φ+−φ−is the difference between the downstream and upstream phases which are
denoted by φ+ and φ− respectively.

For the rescaled phase shift to be insensitive to σ it cannot be dependent directly on ω̄ or Rm,
but must be a function of these control parameters such that σ is eliminated. We choose this to be
Rm/ω̄ =V/(ωH). Henceforth this ratio shall be referred to as the relative velocity.

Figure 3(a) shows that, when plotted against the relative velocity, the rescaled phase shift given
by Eq. (4) has a weak dependence on ω̄ as long as ω̄ is low. For sufficiently low relative ve-
locities, the variation of the rescaled phase shift with ω̄ is weak up to ω̄ ≈ 1. This range of low
relative velocities depends on the locations of the observation points. The closer the observation
point to the nodes (x = ±0.5) the shorter the range of relative velocities for which the rescaled
phase difference remains invariant with ω̄ . Figure 3(a) shows that far enough from the nodes the
relationship between rescaled phase difference and relative velocity is invariant for a range of di-
mensionless frequency from 0.1 to 1, which corresponds to a change of an order of magnitude to
the conductivity.

The scaling given in Eq. (4) only holds for low ω̄ where shielding effect causes the reference
phase to vary non-linearly as ∼ ω̄1/2. This non-linearity is compensated for by taking the reference
phase to the power of 3/2 instead of the square. It results in a second rescaled phase difference
∆3/2φ = ∆0φ/φ3/2 which is plotted against the relative velocity in Fig. 3(b). It can been seen
that the proportionality of the relative velocity and this rescaled phase difference is invariant for a
greater range of ω̄.

Sending coil modelled by two straight wires

In this section we consider the case of an external magnetic field generated by a couple of straight
wires. Figure 4(a) shows that the range of ω̄ where the phase sensitivity varies linearly is rather
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Figure 4: The phase sensitivity versus the dimensionless frequency ω̄ at various horizontal ob-
servation positions at below the layer (a) and rescaled phase shift ∆3/2φ between two observation
points placed below the layer at ±x= 1 versus the relative velocity Rm/ω̄ for various dimensionless
frequencies ω̄(b) for a sending coil modelled by two straight wires.

short As above this non-linearity is compensated by the rescaled phase shift ∆3/2φ which is plotted
in Fig. 4(b) with observation points placed symmetrically at x = ±1 As seen the rescaled phase
shift depends essentially on the relative velocity whilst the variation with ω̄ is relatively weak.

4 Conclusions
We have demonstrated that the dependence of the flow induced phase shift measurements on the
electrical conductivity of the liquid can be reduced by including the phase shift between the sending
and receiving coils into the measurement scheme. It was shown that a strong reduction in the effect
of conductivity is attainable by rescaling the measured phase difference by the reference phase
shift between the sending coil and the upstream receiving coil. This rescaling is dependent on
the nature of the variation of the phase shift with the frequency. At low frequencies, where this
variation is linear, the reduction is achieved by rescaling with the square of the reference phase. At
higher frequencies, the shielding effect results in non-linear variation of the reference phase with
the frequency. This non-linearity can be compensated by a rescaling with the reference phase shift
to the power of 3/2 instead of the square.
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