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Abstract: In this work model of spatially and temporally depng azimutha
perturbations is analyzed an infinitely long radially averaged geometryaosf annular linee
induction pump (ALIP). Using linear stability ansis, it is shown that in convective ty,
instability process these perturbations can beifsigntly amplified before leaving th
system. Perturbain development rates and its transinature areanalyze: to be used for
estimations of unhomogay amplification in a system of finite length.

1. Introduction

It has been reported (theoretically, experimlly and numerically)that high power
induction pumpsoperating with liquid sodium exhibit instable opérg modes, which ar
characterized by noaxisymmetic distribution of velocity and magnetic field, vésions, low
frequency pressure fluctuaticand undesirable energy and pressure I([1, 2, 3].

A theoretical base of thiphenomenon is established By Gailitis and O. Lielausi
[1] where a fundamental stability threshold ofinfinite induction machineis derived —
magnetic Reynolds number > Since then, there are only few authbke F. Werkhoff [4]
who have tried to studysimilar or more sophisticated models, however S$icpmt
improvements ouethe base theory has not been repc

2. Presentation of the problem

Let us analyzease of ALIF identical to [1]. It is simplifiedrom real ALIPby infinite
geometryneglecting influence of channel walls and usingenir sheet formulation only f
mainharmonic of the field (fi. 1.).
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Fig. 1.A simplified model of infinite EMIF




Moreover, consider that (whete- pole pitch and | — length of system):

dy<d, <R, (1); <l (2)

From condition (1) it can be rather correctly asedrthat linear current densify, is
evenly spread over height of non-magnetic dapsignificant is only radial component of
magnetic field and all other effects are averageer wadius. Condition (2) declares that

longitude end effects are negligible — thereforengetry can be considered as infinitely long.

Consider only r component of magnetic field angd velocity components in form:

B = By(p,z,t)e' @ *De,  (3); v=v,(pzt)e,+v,(p,zt)e, (4)

Then induction equation farcomponent of magnetic field is:

dy\ [0B ingaV2A .
AB — pyo (—") [— + (Vv)B] = VAL pitaz-wt) (5)
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Choosing characteristic space and time scales as:
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Defining magnetic Reynolds numheand magnetic field dimensionless amplitide
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Induction equation can be rewritten in dimensiosesm:
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In order to analyze the balance of momentum in fibws necessary to calculate
distribution of electromagnetic force density:

fom = () [om-i] xB @D

0

From which dimensionless form of quasi — statioredegtromagnetic force:

*

fem = ovg (g;i)z g1 [Re(b)ez -V (%)] (12)

In order to simplify solution, it is more convenieto solve vorticity equation,
therefore gradients become zeros and single equiatiogadial vorticity component is:

0 v 2150 )s= (Vx @lwl)) +j2e'R b)Y a3
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j*is modified interaction parameter (ratio of elentamnetic and friction forces) ard
is modified Reynolds number (ratio of inertial drnidtion forces) ky,’ - geometric parameter:
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(10), (13) and continuity equation (17) closesdixgtem of described problem:

We look for solution with perturbations that hayatal and temporal dependency:
¥, = q + 67,[e™Z" 12 cos(mgp)| (18); b = b, + by, [e™Z~ 12 cos(mg)] (19)
n andy are spatial and temporal development rates ofigztion:
n=% Qo y== @
a w

g andb; are unperturbed solutions of system as describgd.in

Considering only real andy, after linearization system becomes:
(2in+ e, — Ky, + igg)8by, = ieb 67, (22); (2lq| — Be,)6P, = j2e " Re(6by,) (23)

gg=c(1-q) 24);, & =eyr—q) (25)
The determinant of system (22, 23) considering @ingar (with respect tq, y) terms:
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(26)

By expanding last term of (26) in Taylor series twansform identity thah andy can
be easily expressed:
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Now using equation for dimensionless developedsures(30) [1]:
j2(1—q)
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And inserting (27) into (30) we have:
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Last two terms of (31) are solution for stabilithréshold derived in [1] (32).
Development rates andy are function of pressure difference from stabilitseshold (33):

2lql(kn” +e)1-q)
& — Ky

qlql (32); Ap=p—po=An—By (33)

Po
By expressing from (33) and inserting it into exponent of pep@ation development:
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Group velocity of perturbation (35) is not exaatigual to mean velocity of flow, but
has correction (36). Fgr>> 1,k = 1,9 > 0 (case of real ALIP)4 will be positive in stable
regime (0 <4 < 1), near4; = 1) it will have singularity and negative sign (k< 2, after
(eq = 27 44 is nonnegative. As singular behavior is not comnimmature, pump can
experience uncontrolled transient from stable tetalle regime, which is experimentally
observed in [3]. Moreover, (34) is solution ofsfirorder partial differential (transport)
equations’ initial value problem (IVP) similar asclissed in [5]. Perturbation in the initial
moment (t = 0) can be expressed in Fourier's s€Biés then solution of this IVP is (38):

o8] o8]

S5v(,0) = Z a, et (37); Sv(zE) =Bt Z an e"Z-%8)  (38)
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Expression (38) captures the nature of perturbatievelopment in a convective
instability process. In (38) second term descrimesement of perturbation with (35) while
sustaining its shape, however, first term statasithwill exponentially develop in time. Such
behavior described above is illustrated in (fig. @pnsider idealized pump with length L, and
some randomly shaped perturbation in initial timenment § in the inlet. If pump is stable,
perturbation will move towards outlet while decliegs(l;) and after leaving the system.
Similarly, if pump is unstable (fig. 3) perturbatiovill also move towards outlet, but being
amplified. Reaching some maximum in the outlgti{teventually leaves the system.
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Fig. 2. Principal schematic of perturbatiorFig. 3. Principal schematic of perturbation
development in stable regime. development in unstable regime.



Now consider (fig. #that pump is unstable and some perturbation avexyst n the
inlet (point B). In a static casty = 0), it will be amplified up to point E (Bold ling — E) by a
exponential factor (39).

Suppose that for some particu
reason pertipation in the inlet starts f
increase from B withy < 0 for
characteristic time interval- same as
necessaryor perturbation to travel from
to L - and stops at point CApparently, it
results in bwer spatial development ran
and it is described bglotted line (-E and
(40).
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Fig. 4. Principal schematic of perturbati
development in unstable regir

However, ag = 0 again, after characteristic time interval idescribed by bold line
— Fand spatial development rate 39). If it hadn’t been stopped &l development woul
remain as in (4)) but amplitude would continue to increase in tietted line ¢ — &, and
so forth.Similarly, if perturbation in inlet decreases fr@nwith y > 0 and stops at point /
after characteristic time intervalcan be described by dotted line A-€orresponding tc40)
and afterwards with bold line — D (39. Also if it hadn’t been stopped amplitude wo
continue to decrease increase in time, dottedA; — E,, and so forth.

3. Conclusion

Preformed linear stalilly investigation reveals nature of convection typeabsity in
ALIP. It is shown that somrandomperturbation will travel with group velocii(35) while
sustaining its shapend develo(fig. 2 and 3) until it leaves the systeDevelopment rates «
perturbation can be calculated usin7 — 29).

If some mechanism exists that generismall staticperturbation in the inleof ALIP
(e.g. geometrical imprecisipits amplification can lead to inhomogeneous flow in thlet.
Moreover, if transient éhaviorexists in the inlet (e.g. turbulent floygrturbationwill have
different rates of amplification ig. 4) which might lead to significant fluctuatic of
developed pressure.
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