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Abstract: In this work model of spatially and temporally developing azimuthal 

perturbations is analyzed in an infinitely long radially averaged geometry of an annular linear 
induction pump (ALIP). Using linear stability analys
instability process these perturbations can be significantly amplified before leaving the 
system. Perturbation development rates and its transient 
estimations of unhomogenity amplif

1. Introduction 

It has been reported (theoretically, experimenta
induction pumps operating with liquid sodium exhibit instable operating modes, which are 
characterized by non-axisymmetr
frequency pressure fluctuations

A theoretical base of this 
[1] where a fundamental instability 
magnetic Reynolds number > 1. 
who have tried to study similar or more sophisticated models, however significant 
improvements over the base theory has not been reported.

2. Presentation of the problem

Let us analyze case of ALIP
geometry, neglecting influence of channel walls and using current sheet formulation only for 
main harmonic of the field (fig

Fig. 1.A simplified model of infinite EMIP.
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In this work model of spatially and temporally developing azimuthal 
in an infinitely long radially averaged geometry of an annular linear 

induction pump (ALIP). Using linear stability analysis, it is shown that in convective type 
instability process these perturbations can be significantly amplified before leaving the 

on development rates and its transient nature are analyzed
ity amplification in a system of finite length. 

It has been reported (theoretically, experimentally and numerically) 
operating with liquid sodium exhibit instable operating modes, which are 

axisymmetric distribution of velocity and magnetic field, vibrations, low 
frequency pressure fluctuations and undesirable energy and pressure losses

A theoretical base of this phenomenon is established by A. Gailitis and O. Lielausis 
stability threshold of infinite induction machine 

magnetic Reynolds number > 1. Since then, there are only few authors like 
similar or more sophisticated models, however significant 

r the base theory has not been reported. 

Presentation of the problem 

case of ALIP identical to [1]. It is simplified from real ALIP 
neglecting influence of channel walls and using current sheet formulation only for 

harmonic of the field (fig. 1.).  

Fig. 1.A simplified model of infinite EMIP. 
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In this work model of spatially and temporally developing azimuthal 
in an infinitely long radially averaged geometry of an annular linear 

is, it is shown that in convective type 
instability process these perturbations can be significantly amplified before leaving the 

analyzed to be used for 

lly and numerically) that high power 
operating with liquid sodium exhibit instable operating modes, which are 

ic distribution of velocity and magnetic field, vibrations, low 
and undesirable energy and pressure losses [1, 2, 3]. 

A. Gailitis and O. Lielausis 
infinite induction machine is derived – 

like F. Werkhoff [4] 
similar or more sophisticated models, however significant 

from real ALIP by infinite 
neglecting influence of channel walls and using current sheet formulation only for 

 



Moreover, consider that (where τ – pole pitch and l – length of system): 
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From condition (1) it can be rather correctly assumed that linear current density j lin is 
evenly spread over height of non-magnetic gap dm, significant is only radial component of 
magnetic field and all other effects are averaged over radius. Condition (2) declares that 
longitude end effects are negligible – therefore geometry can be considered as infinitely long. 

Consider only r component of magnetic field and z, φ velocity components in form: 
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Then induction equation for r component of magnetic field is: 
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Choosing characteristic space and time scales as: 
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Defining magnetic Reynolds number ε and magnetic field dimensionless amplitude b: 

= � )�*!>2 +����,     
8�;      @ � ����2
√2)�4      
9� 

Induction equation can be rewritten in dimensionless form: 
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In order to analyze the balance of momentum in flow it is necessary to calculate 
distribution of electromagnetic force density: 
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From which dimensionless form of quasi – stationary electromagnetic force: 
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In order to simplify solution, it is more convenient to solve vorticity equation, 
therefore gradients become zeros and single equation for radial vorticity component is: 
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j2 is modified interaction parameter (ratio of electromagnetic and friction forces) and β 
is modified Reynolds number (ratio of inertial and friction forces), km’  - geometric parameter: 
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(10), (13) and continuity equation (17) closes the system of described problem: 
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We look for solution with perturbations that have spatial and temporal dependency: 
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n and γ are spatial and temporal development rates of perturbation: 
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q and bc are unperturbed solutions of system as described in [1]. 

Considering only real n and γ, after linearization system becomes: 
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The determinant of system (22, 23) considering only linear (with respect to n, γ) terms: 
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By expanding last term of (26) in Taylor series we transform identity that n and γ can 
be easily expressed: 
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Now using equation for dimensionless developed pressure (30) [1]: 
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And inserting (27) into (30) we have: 
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Last two terms of (31) are solution for stability threshold derived in [1] (32). 
Development rates n and γ are function of pressure difference from stability threshold (33): 

y� � 2|`|p]�̂C # =qCr
1 ( `�
=qC ( ]�̂ ( `|`|     
32�;    ∆y � y ( y� � 4l ( �n     
33� 

By expressing γ from (33) and inserting it into exponent of perturbation development: 
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Group velocity of perturbation (35) is not exactly equal to mean velocity of flow, but 
has correction (36). For β >> 1, km’  ≈ 1, q > 0 (case of real ALIP) ∆g will be positive in stable 
regime (0 < εq < 1), near (εq ≈ 1) it will have singularity and negative sign (1 < εq < 20.5), after 
(εq = 20.5) ∆g is nonnegative. As singular behavior is not common in nature, pump can 
experience uncontrolled transient from stable to unstable regime, which is experimentally 
observed in [3].  Moreover, (34) is solution of first order partial differential (transport) 
equations’ initial value problem (IVP) similar as discussed in [5]. Perturbation in the initial 
moment (t = 0) can be expressed in Fourier’s series (37), then solution of this IVP is (38): 
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 Expression (38) captures the nature of perturbation development in a convective 
instability process. In (38) second term describes movement of perturbation with (35) while 
sustaining its shape, however, first term states that it will exponentially develop in time. Such 
behavior described above is illustrated in (fig. 2). Consider idealized pump with length L, and 
some randomly shaped perturbation in initial time moment t0 in the inlet. If pump is stable, 
perturbation will move towards outlet while decreasing (t4) and after leaving the system. 
Similarly, if pump is unstable (fig. 3) perturbation will also move towards outlet, but being 
amplified. Reaching some maximum in the outlet (t4) it eventually leaves the system.  

 

Fig. 2. Principal schematic of perturbation 
development in stable regime. 

 

Fig. 3. Principal schematic of perturbation 
development in unstable regime. 



Now consider (fig. 4) that pump is unstable and some perturbation always exist i
inlet (point B). In a static case (
exponential factor (39). 

Fig. 4. Principal schematic of perturbation 
development in unstable regime.

However, as γ = 0 again, after characteristic time interval it is described by bold line C 
– F and spatial development rate is (
remain as in (40), but amplitude would continue to increase in time, dotted line C
so forth. Similarly, if perturbation in inlet decreases from B with 
after characteristic time interval it 
and afterwards with bold line A 
continue to decrease increase in time, dotted line A

3. Conclusion 

Preformed linear stability 
ALIP. It is shown that some 
sustaining its shape and develop 
perturbation can be calculated using (2

If some mechanism exists that generates 
(e.g. geometrical imprecision) 
Moreover, if transient behavior 
different rates of amplification (f
developed pressure.  
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