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Abstract: A two-dimensional CFD model for predicting the oscillating flow through a jet pump
is developed. Various taper angles are investigated and total minor loss coefficients are derived.
A good correspondence is achieved with experimental results from the literature. However, at
higher taper angles a dramatic decay in the jet pump pressure drop is observed, which serves
as a starting point for the improvement of jet pump design criteria for compact thermoacoustic
applications.

1. Introduction

A jet pump is a crucial part of most closed-loop thermoacoustic devices. In such devices, a
time-averaged mass flux known as Gedeon streaming can exist [1]. This time-averaged mass flux
results in convective heat transport that can degrade the efficiency of thermoacoustic devices.
To suppress Gedeon streaming, a jet pump can be used. Backhaus and Swift have shown that
by correctly shaping a jet pump it is possible to take advantage of asymmetry in hydrodynamic
end effects to impose a pressure drop across the jet pump [2]. A typical jet pump consists of a
narrowed, tapered tube section as shown schematically in Figure 1. By balancing the pressure
drop across the jet pump with that which exists across the regenerator in a thermoacoustic device,
it is possible to suppress Gedeon streaming.

Despite the proven effectiveness of jet pumps, there is a lack of understanding about the exact
fluid dynamics that lead to the observed pressure drop. Current criteria for the design of a jet
pump assume that the flow at any point in time has little “memory” of its past history – which
is often referred to as the “Iguchi-hypothesis” – allowing the acoustic behavior to be based on
a quasi-steady approximation and the use of minor loss coefficients reported for steady flow
conditions [2, 3, 4, 5]. Qualitative evidence exists which supports the current analysis theory, but
quantitative agreement between the theory and experiments remains poor.

Previous studies include mainly experimental work and only a few computational studies have
been published. Petculescu and Wilen measured the pressure drop for a series of jet pump
geometries and derived minor loss coefficients [6]. They reported a difference between the
measured and theoretical minor loss coefficients. Nevertheless, for the investigated geometries –
up to a taper angle of 10◦ – good agreement between steady flow and oscillating experiments was
obtained. Computational studies related to jet pumps mainly include the work of Boluriaan and
Morris [7, 8]. Although the flow field was calculated for a fixed geometry and wave amplitude,
the relation between wave amplitude and pressure drop was not published.

In this paper, the oscillating flow in the vicinity of a jet pump is investigated using a computational
fluid dynamics (CFD) model. Validation is provided with the experimental results of Petculescu
and Wilen [6]. Furthermore, the influence of the jet pump taper angle is analyzed by changing
the jet pump length. This study shows the effect on the achieved pressure drop when making a
jet pump more compact.
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Figure 1: Jet pump with parameters that define the geometry (not to scale). Dashed line indicates
centerline.

2. Modeling

A two-dimensional axisymmetric model of a jet pump is developed using the commercial CFD
package COMSOL Multiphysics v4.4 [9]. To allow for the validation of the computational
model, the jet pump dimensions and boundary conditions are based on data from the literature [6].
In all cases, air at a mean temperature of T0 = 20 ◦C and a mean pressure of p0 = 1 atm is used
as the working fluid. The driving frequency of the system is f = 100 Hz. Under these conditions,
the viscous penetration depth is: δν =

√
2µ/ωρ = 0.22 mm.

Geometry The jet pump geometry is defined using a number of parameters: the big radius Rb,
the effective small radius Rs,eff , the taper half-angle α and the radius of curvature at the small
exit of the jet pump Rcurv . All these parameters are shown in Figure 1, with Rs being the small
radius of the jet pump without curvature (Rcurv = 0), as defined in Equation 1:

Rs = Rs,eff −Rcurv

(
sinα + 1

cosα
− cosα

)
(1)

The total length of the jet pump is calculated using Equation 2:

LJP =
Rb −Rs

tanα
(2)

Besides jet pump region, the computational domain comprises a region on both sides of the jet
pump with length Lin = 650 mm and radius R0. The geometrical parameter values used for the
validation case are listed in Table 1a.

For the simulations with variable taper angle, the exit radii Rb and Rs,eff are kept constant and
are identical to those in the validation case. By changing the jet pump length LJP , the taper angle
α will change and the effect of a more compact jet pump can be studied. The taper angles that
are considered and resulting jet pump lengths are summarized in Table 1b.

Numerical model Within the described computational domain, the unsteady, incompressible
Navier-Stokes equations are solved [9]. To solve these equations, the fully coupled direct
MUMPS solver is used with a maximum time-step of ∆t = 1 · 10−5 s. This yields Nt = 1000
time-steps per wave period. Additional isotropic diffusion of δid = 0.1 is used to damp out initial
transients and to obtain a stable solution. The assumption of incompressibility is justified by
the ratio of the jet pump dimension to the acoustic wavelength: the jet pump length is much
smaller than the acoustic wavelength (LJP/λ� 1). Hence, the flow can be considered locally
incompressible [10].

2



Parameter Value

R0 7.9 mm
Rb 4.04 mm
Rs,eff 0.93 mm
Rcurv 1.85 mm
LJP 27.5 mm

(a) Jet pump dimensions
for validation case, based
on [6].

α [◦] LJP [mm]

3 64.3
5 38.5
7 27.5
10 19.1

α [◦] LJP [mm]

15 12.6
20 9.3
30 5.8
45 3.4

(b) Resulting jet pump length LJP for
applied taper angles α.

Table 1: Dimensions of simulated jet pump geometries.

To simulate an acoustic wave inside the computational domain, an oscillating velocity boundary
condition is used on the left side of the domain with u(t) = u1 · sin(2πft). On the right side of
the domain, a pressure boundary condition is used with a constant relative pressure of p = 0 Pa
to simulate an open end. No-slip wall boundary conditions are applied to both the tube wall and
the jet pump wall. On the x-axis, an axisymmetric boundary condition is imposed.

Computational mesh The domain is discretized using a computational mesh consisting of
54,000 quadrilateral elements. An unstructured mesh is used near the jet pump, combined with a
structured mesh in the far field. The elements are stretched in the direction of wave propagation,
corresponding to the expected gradients [11]. Moreover, a mesh refinement is applied near
all no-slip wall boundaries such that a total of Nbl = 10 elements exist within a distance of a
viscous penetration depth δν from the wall. A further refinement to Nbl = 20 elements showed a
deviation in the mean pressure drop of less than 0.2 %, which provides evidence for the mesh
independence of the results.

Minor loss calculation Backhaus and Swift were the first to derive an equation for the mean
pressure drop across a jet pump based on steady-flow minor loss coefficients [2]. The minor
losses in steady flow can be calculated using: ∆pml = K 1

2
ρu2, with K the minor loss coefficient

dependent on the geometry and, in this case, u(t) = u1 sinωt a pure sinusoidal flow velocity. By
time-integration, a relation for the mean pressure drop across the jet pump can be derived:

∆p2,JP =
1

8
ρ0|u1|2JP

[
(Kexp,s −Kcon,s) +

(
As
Ab

)2

(Kcon,b −Kexp,b)

]
(3)

where Kcon and Kexp are the minor loss coefficients for the contraction and expansion phase,
respectively, and |u1|JP is the maximum velocity amplitude at the small exit of the jet pump. In
the current paper, the mean pressure drop as a function of |u1|JP is studied. Hence, it is possible
to derive a “total” minor loss coefficient, incorporating the expansion and contraction effects at
both exits:

Ktot =
8∆p2,JP

|u1|2JPρ0
(4)

The total minor loss coefficient will be derived from the simulation results based on Equation 4.
The use of more advanced models that correct for the non-harmonic velocity inside the jet pump
is beyond the scope of this brief paper.
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(b) Total minor loss coefficient Ktot .

Figure 2: Results of validation case, taper angle α = 7◦. Solid lines indicate results derived
from [6], black squares (�) indicate simulation results and dashed lines are predictions using
Eq. 3.

3. Results

The CFD model is validated by performing a range of simulations applying the reference
geometry (see Table 1a). The velocity amplitude at the left boundary condition is varied from
|u1| = 0.01 m/s to 1.0 m/s. The resulting mean pressure drop is shown in Figure 2a. In Figure 2b,
the behavior of Ktot as a function of the velocity amplitude is shown for both the reference data
and the simulation results. It is clear that the regime where ∆p2 ∝ |u1|2JP is only present at
higher wave amplitudes, which is in accordance with earlier work [6]. A least-square fit based
on Eq. 4 yields Ktot = 0.32 for the reference data and Ktot = 0.38 for the simulation results,
while the theoretical total minor loss coefficient, calculated using Eq. 3, is Ktot = 0.96.

Influence of taper angle Starting from the previously used geometry, a set of simulations
is carried out in which the jet pump taper angle – and consequently the jet pump length – is
varied (see Table 1b). A fixed velocity amplitude of |u1| = 0.2 m/s is used. A clear effect of
the taper angle on the total minor loss coefficient Ktot is observed as shown in Figure 3: an
increased taper angle leads to a decreased minor loss coefficient and thus to a decreased jet pump
performance. Note that Ktot from simulation results is now based on a fixed velocity amplitude.
These results are similar to those reported in the literature for the range of α = 3◦ to 10◦, but
show a dramatic decay in Ktot for higher taper angles: from α = 20◦ on, no positive mean
pressure drop was measured at all. This behavior is confirmed by studying the vorticity field:
while for low taper angles the vortices propagate purely rightwards, at higher taper angles the
vortex shedding becomes symmetric and vortices propagate in both directions. A detailed study
of the vortex shedding and flow separation will be reported in a future publication.

4. Conclusion

A CFD model for the oscillating flow through a jet pump is developed and compared with earlier
work. Total minor loss coefficients have been calculated, and in comparison to the theoretical
values there is good agreement between simulation results and reference data. The effect of the
taper angle has been studied, and for small taper angles the simulation results are equivalent to
those reported in the literature. Moreover, for higher taper angles a dramatic decay in Ktot is
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Figure 3: Effect of taper angle α on total minor loss coefficient Ktot for |u1|JP = 0.2 m/s. Solid
line indicates results derived from [6], black squares (�) indicate simulation results.

observed which had not previously been reported. This certainly puts a price on the achievable
pressure drop for compact jet pump designs.

The presented CFD model serves as a starting point for the numerical calculation of minor loss
coefficients and a further validation of the used numerical methods will be carried out. Future
research will focus both on a detailed explanation of the observed flow phenomena and on
improved jet pump design criteria for compact thermoacoustic applications.
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