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Abstract: This work presents a boundary approach to accurately compute at a reason-
able cpu time cost the rigid-body motion of a solid and insulating particle immersed above
a plane wall in a conducting liquid subject to ambient uniform electric and magnetic fields.
Both insulating or perfectly conducting walls are addressed and the advocated formulation
holds for arbitrary-shaped and arbitrary-located particles. It reduces to the determina-
tion of a few surface quantities on the particle boundary by numerically inverting seven
boundary-integral equations.

1. Introduction

It is known, both theoretically [1] and experimentally [2], that an insulating solid particle
suspended in a Newtonian and conducting liquid with uniform viscosity p and conductivity
o > 0 migrates when subject to uniform ambient electric and magnetic fields E and B. The
particle rigid-body motion has translational velocity U (the velocity of one point attached
to the particle) and angular velocity € depending upon (o, ), the particle’s geometry and
the fields E and B. For example, an insulating sphere with radius a translates without
rotating at the velocity U = —a?c[E A B|/(61) (see [1]) whereas non-spherical insulating
particles in general both rotate and translate [3,4].

In applications the liquid is however bounded and the particle’s motion prevailing in
an unbounded liquid domain might be strongly affected by the particle-boundary inter-
actions. Such interactions have been investigated in the literature [5-7] by addressing the
case of a particle located near a plane, solid and motionless wall ¥ and distinguishing two
different cases: the Case 1 of an insulating plane wall ¥ in which the applied uniform
electric field E is parallel to the wall and the Case 2 of an perfectly conducting plane wall
> in which the uniform electric field E is normal to the wall. Case 1 has been handled in
[7] but solely for a distant and spherical insulating particle while [5] copes only with Case
2 for a conducting or insulating and arbitrarily-located sphere. Finally, [6] deals with a
non-spherical conducting particle in Case 2 by appealing to a boundary approach which
has in practice been implemented solely when both vectors E are B are normal to the
wall 3. The present work proposes to solve the problem for an insulating particle with
arbitrary shape and location in both Case 1 and Case 2 by exploiting a new and efficient
flow decomposition.

2. Assumptions and governing electric and hydrodynamic problems

As sketched in fig 1, we consider a solid conducting particle P freely suspended in a
Newtonian liquid metal, of uniform viscosity p and conductivity o > 0, above the z3 =0
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plane and solid wall . The particle has center of volume O’ and smooth boundary S with
unit normal n directed into the liquid domain €.
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Figure 1: A solid and insulating particle freely suspended in a Newtonian liquid metal in
the vicinity of the 3 = 0 solid plane and motionless wall . Here, the wall is perfectly
conducting (Case 2) with the applied electric field E parallel with e;.

Under uniform ambient electric and magnetic fields E and B a liquid flow driven by
the Lorentz body-force takes place and induces, by viscosity, a rigid-body migration of
the particle P. With respect to a Cartesian system (O, xy, 22, x3) attached to the wall,
such a so-called electro-magneto-phoretic motion is described by the particle translational
velocity U (here the velocity of its point O’) and angular velocity €. This works presents
a boundary approach to determine the particle motion (U, ©2) whatever the particle shape
and location for two quite different types of walls:

(i) Case 1: an insulating wall with a uniform applied electric field E parallel with the
wall 3.

(ii) Case 2: a perfectly conductting wall with, as illustrated in fig 1, a uniform applied
electric field E normal to the wall X.

Note that [7] solely deals with Case 1 for a distant and spherical particle whereas [6]
solely considers the Case 2 for a particle with arbitrary shape and location.

The insulating particle affects the ambient electric field and the disturbed electric field
reads E — V¢ in the liquid domain 2. The function ¢ satisfies the well-posed problem

V=0 in Q, Vo — 0 as r =|OM| — oo, (1)
Von=Emn on S, Vo.es=00n X in Case 1, » = 0 on X in Case 2. (2)

Here, (1)-(2) is efficiently solved by using for each Case i the following integral represen-

tation
1 1 . 1

609 = 37 LI = (D dS(y) for xin 0 (3)

where y’ designates the symmetric of the point y with respect to the wall ¥ and the
unknown surface charge density ¢ on the particle surface S is obtained by enforcing the
condition V¢.n = E.n on S (which results in a boundary-integral equation given in §3).

As previously mentioned, the liquid flows with pressure () and velocity u with magni-
tude V' > 0. The particle length scale a is such that the flow Reynolds number Re = pVa/u
vanishes. Assuming also vanishing Hartmann and magnetic Reynolds numbers, the mag-
netic field B is not disturbed and (u, Q) becomes a quasi-steady Stokes flow driven by
the non-uniform Lorentz body force f = o(E — V¢) A B. Setting Q = P + ¢(E A B).x,




one arrives at the following key problem for the flow (u, P)

Vau=0and uVu=VP+sVypAB in Q, (4)
u=U+QA0MonS, u=0o0n% (u,P)— (0,0) as |x| — oc. (5)

The particle rigid-body motion (U, Q) occurring in (5) has to be determined by enforcing
additional relations. For a particle with negligible inertia those conditions are obtained
by requiring the particle to be force-free and torque-free. If the flow (u, P) has stress
tensor o one then arrives at, recalling that O’ is the particle center of volume and setting
x' = O'M,

F .= /Sa'.ndS — oVp(EAB), C:= /Sx' Ao ndS =0 (6)

where Vp designates the particle volume. At a very first glance, one has to solve (4)-(6) in
order to gain the desired particle migration (U, Q). The next sections show how one can
actually circumvent the determination of the flow (u, P) by resorting to a suitable bound-
ary formulation which finally reduces to the determination of a few surface quantities on
the particle surface S'!

3. Flow decomposition and key boundary-integral equations

By linearity, it is useful to adopt the following decompositions u = u; + w + v and
P = pp, +p such that the flow (up, py) obeys (4)-(5) for o = 0 while the other flows satisfy

V.w =0 and uV*w =0Vo AB in Q,w — 0 as |x]| — oo, (7)
V.v=0and uV?*v=Vp in , (8)
v=-wonsS, v=—won (v,p)— (0,0) as |x| — oo. (9)

The flow (uy, p) exerts on the moving particle a force F, and a torque C;, (with respect to
O’) which are obtained by introducing six auxiliary Stokes flows (u(LZ), p(LZ)) (fori=1,2,3
and L = t,r) free from body force, quiescent far from P and obeying the specific boundary

conditions . ‘ ,
u%) =0onY, ugl) =e; on S, uff) =e; Ax on S. (10)

Upon introducing the surface tractions fg) exerted on S by the flows (u(Li), p(Li)) and the
second-rank tensors K, W,V and D with Cartesian components

Ki = ([ eif0ds)/n, Wiy =[] (e Ax)£dS) /1 ()
Vi = —lf(e;nx)£7as]/n. Dy =~[[ e; £/ (12

one immediately gets the relations
F,=—{KU+V.Q}, C,=—u{D.U+ W.Q}. (13)

The flow w has zero pressure and stress tensor o, whereas the flow (v, p) has stress tensor
o. Such flows exert on the particle forces and torques (with respect to O’) given by

F, — / owndS, Cy, :/X’/\a'w.ndS, F, — / oy.ndS, C, :/X’/\a'v.ndS. (14)
S S S S



Accordingly, the relations (6) become the well-posed linear system
KU+V.Q={Fy+F,—cVp(EAB)}/u, DU+ W.Q={Cy +C,}/u (15)

for the unknown particle rigid-body motion (U, €2). This system is shown in this paper to
be entirely determined from the knowledge of a very few surface quantities on the particle
boundary S : the previously-introduced (see §2) surface charge density ¢ and the tractions
f S). Such quantities are found to obey the following boundary-integral equations

/

a(x i XY B
'77 4w/{m_yp 1)Et;@}n@M@MS@%——mnkgﬁnxon& (16)
_ﬁ/stk(X’ YIEY e (y)dS(y) = [ul e;)(x) for x on S (17)

where in (17) summation over indices k£ holds and Gjx(x,y) denotes the Cartesian com-
ponent of the so-called Green tensor analytically obtained in [8].
4. Relevant analytical solution for w and use of the reciprocal identity

As the reader may check using the representation (3), one solution to (7) is

o

w(x) =

fanto=2 -~y 2= _}dS(y)| ABforx in QUSUS.  (18)

87 x —y| x —y/|

The associated surface traction o.n on the particle surface S then reads

fraonlt) =~ [ gty [ YRN ) A B9 o =) ABlGx )
oy BRI R A asty). (19

Thus, one can evaluate the required force F, and torque C,, from the knowledge of q.
Furthermore, (v, p) and the flow (u L) ,p\) with stress tensor o}’ are Stokes flows free from
body force and quiescent far from the particle. Therefore, the usual reciprocal identity
[9] applies and yields

/ v.o') nds = u'’ .o, ndsS. (20)
sus sus

From the definition (14), the property (20) and the boundary conditions (9)-(10) one then
gets the key relations

F,.e = —/ W.ft(i)dS—/W.a'gi).egdS, C,.e = —/ W.ff)dS—/W.af).egdS. (21)
S 2 5 2

By virtue of (18), the velocity w required on the boundaries S and ¥ when applying the
above links (14) is gained from the charge density ¢ on the particle surface S. Finally,
inspecting (21) shows that one also needs to compute each stress tensors O'S:i) on the plane
wall . Again, this is achieved from the knowledge of the traction fg) on the surface .S,

using this time the key integral representation
) 1 7 .
€. 0'5;)( ).er = o /Slej(x, y)[fjg).ek] (y)dS(y) forxin QUX (22)
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where the components Tj;; are available in closed analytical form in [10]. Those results

are too long to be reproduced here. In exploiting (21) one then makes use of (22) on the
wall X.

5. Concluding remarks

Owing to a suitable flow decomposition, it has been possible to reduce the determination
of the particle rigid-body motion by solely appealing to a few surface quantities on the
particle boundary: the charge density and the tractions exerted there when the particle
either translates or rotates in absence of ambient electric and magnetic fields. The re-
sulting boundary approach, valid whatever the particle shape and location, ends up with
seven boundary-integral equations governing those key quantities. Such integral equations
must be numerically solved in general or asymptotically inverted for a distant particle.
Both circumstances will be addressed at the oral presentation which will report numerical

results for spherical and non-spherical insulating particles and differents types (Case 1
and Case 2) of walls.
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