
MOTION OF AN INSULATING SOLID PARTICLE NEAR A PLANE

BOUNDARY UNDER THE ACTION OF UNIFORM AMBIENT

ELECTRIC AND MAGNETIC FIELDS

SELLIER A.
LadHyX. Ecole polytechnique, 91128 Palaiseau Cedex, FRANCE
e-mail: sellier@ladhyx.polytechnique.fr

Abstract: This work presents a boundary approach to accurately compute at a reason-
able cpu time cost the rigid-body motion of a solid and insulating particle immersed above
a plane wall in a conducting liquid subject to ambient uniform electric and magnetic fields.
Both insulating or perfectly conducting walls are addressed and the advocated formulation
holds for arbitrary-shaped and arbitrary-located particles. It reduces to the determina-
tion of a few surface quantities on the particle boundary by numerically inverting seven
boundary-integral equations.

1. Introduction

It is known, both theoretically [1] and experimentally [2], that an insulating solid particle
suspended in a Newtonian and conducting liquid with uniform viscosity µ and conductivity
σ > 0 migrates when subject to uniform ambient electric and magnetic fields E and B. The
particle rigid-body motion has translational velocity U (the velocity of one point attached
to the particle) and angular velocity Ω depending upon (σ, µ), the particle’s geometry and
the fields E and B. For example, an insulating sphere with radius a translates without
rotating at the velocity U = −a2σ[E∧B]/(6µ) (see [1]) whereas non-spherical insulating
particles in general both rotate and translate [3,4].

In applications the liquid is however bounded and the particle’s motion prevailing in
an unbounded liquid domain might be strongly affected by the particle-boundary inter-
actions. Such interactions have been investigated in the literature [5-7] by addressing the
case of a particle located near a plane, solid and motionless wall Σ and distinguishing two
different cases: the Case 1 of an insulating plane wall Σ in which the applied uniform
electric field E is parallel to the wall and the Case 2 of an perfectly conducting plane wall
Σ in which the uniform electric field E is normal to the wall. Case 1 has been handled in
[7] but solely for a distant and spherical insulating particle while [5] copes only with Case
2 for a conducting or insulating and arbitrarily-located sphere. Finally, [6] deals with a
non-spherical conducting particle in Case 2 by appealing to a boundary approach which
has in practice been implemented solely when both vectors E are B are normal to the
wall Σ. The present work proposes to solve the problem for an insulating particle with
arbitrary shape and location in both Case 1 and Case 2 by exploiting a new and efficient
flow decomposition.

2. Assumptions and governing electric and hydrodynamic problems

As sketched in fig 1, we consider a solid conducting particle P freely suspended in a
Newtonian liquid metal, of uniform viscosity µ and conductivity σ > 0, above the x3 = 0
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plane and solid wall Σ. The particle has center of volume O′ and smooth boundary S with
unit normal n directed into the liquid domain Ω.
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Figure 1: A solid and insulating particle freely suspended in a Newtonian liquid metal in
the vicinity of the x3 = 0 solid plane and motionless wall Σ. Here, the wall is perfectly

conducting (Case 2) with the applied electric field E parallel with e3.

Under uniform ambient electric and magnetic fields E and B a liquid flow driven by
the Lorentz body-force takes place and induces, by viscosity, a rigid-body migration of
the particle P. With respect to a Cartesian system (O, x1, x2, x3) attached to the wall,
such a so-called electro-magneto-phoretic motion is described by the particle translational
velocity U (here the velocity of its point O′) and angular velocity Ω. This works presents
a boundary approach to determine the particle motion (U,Ω) whatever the particle shape
and location for two quite different types of walls:

(i) Case 1: an insulating wall with a uniform applied electric field E parallel with the
wall Σ.

(ii) Case 2: a perfectly conductting wall with, as illustrated in fig 1, a uniform applied
electric field E normal to the wall Σ.

Note that [7] solely deals with Case 1 for a distant and spherical particle whereas [6]
solely considers the Case 2 for a particle with arbitrary shape and location.

The insulating particle affects the ambient electric field and the disturbed electric field
reads E −∇φ in the liquid domain Ω. The function φ satisfies the well-posed problem

∇2φ = 0 in Ω, ∇φ → 0 as r = |OM| → ∞, (1)

∇φ.n = E.n on S, ∇φ.e3 = 0 on Σ in Case 1, φ = 0 on Σ in Case 2. (2)

Here, (1)-(2) is efficiently solved by using for each Case i the following integral represen-
tation

φ(x) =
1

4π

∫

S
q(y){

1

|x− y|
− (−1)i 1

|x − y′|
}dS(y) for x in Ω (3)

where y′ designates the symmetric of the point y with respect to the wall Σ and the
unknown surface charge density q on the particle surface S is obtained by enforcing the
condition ∇φ.n = E.n on S (which results in a boundary-integral equation given in §3).

As previously mentioned, the liquid flows with pressure Q and velocity u with magni-
tude V > 0. The particle length scale a is such that the flow Reynolds number Re = ρV a/µ
vanishes. Assuming also vanishing Hartmann and magnetic Reynolds numbers, the mag-
netic field B is not disturbed and (u, Q) becomes a quasi-steady Stokes flow driven by
the non-uniform Lorentz body force f = σ(E − ∇φ) ∧ B. Setting Q = P + σ(E ∧ B).x,
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one arrives at the following key problem for the flow (u, P )

∇.u = 0 and µ∇2u = ∇P + σ∇φ ∧B in Ω, (4)

u = U + Ω ∧O′M on S, u = 0 on Σ, (u, P ) → (0, 0) as |x| → ∞. (5)

The particle rigid-body motion (U,Ω) occurring in (5) has to be determined by enforcing
additional relations. For a particle with negligible inertia those conditions are obtained
by requiring the particle to be force-free and torque-free. If the flow (u, P ) has stress
tensor σ one then arrives at, recalling that O′ is the particle center of volume and setting
x′ = O′M,

F :=
∫

S
σ.ndS = σVP(E ∧B), C :=

∫

S
x′ ∧ σ.ndS = 0 (6)

where VP designates the particle volume. At a very first glance, one has to solve (4)-(6) in
order to gain the desired particle migration (U,Ω). The next sections show how one can
actually circumvent the determination of the flow (u, P ) by resorting to a suitable bound-
ary formulation which finally reduces to the determination of a few surface quantities on
the particle surface S!

3. Flow decomposition and key boundary-integral equations

By linearity, it is useful to adopt the following decompositions u = uh + w + v and
P = ph +p such that the flow (uh, ph) obeys (4)-(5) for σ = 0 while the other flows satisfy

∇.w = 0 and µ∇2w = σ∇φ ∧ B in Ω,w → 0 as |x| → ∞, (7)

∇.v = 0 and µ∇2v = ∇p in Ω, (8)

v = −w on S, v = −w on Σ, (v, p) → (0, 0) as |x| → ∞. (9)

The flow (uh, ph) exerts on the moving particle a force Fh and a torque Ch (with respect to

O′) which are obtained by introducing six auxiliary Stokes flows (u
(i)
L , p

(i)
L ) (for i = 1, 2, 3

and L = t, r) free from body force, quiescent far from P and obeying the specific boundary
conditions

u
(i)
L = 0 on Σ, u

(i)
t = ei on S, u(i)

r = ei ∧ x′ on S. (10)

Upon introducing the surface tractions f
(i)
L exerted on S by the flows (u

(i)
L , p

(i)
L ) and the

second-rank tensors K,W,V and D with Cartesian components

Kij = −[
∫

S
ej .f

(i)
t dS]/µ, Wij = −[

∫

S
(ej ∧ x′).f (i)

r dS]/µ, (11)

Vij = −[
∫

S
(ej ∧ x′).f

(i)
t dS]/µ, Dij = −[

∫

S
ej .f

(i)
r dS]/µ (12)

one immediately gets the relations

Fh = −µ{K.U + V.Ω}, Ch = −µ{D.U + W.Ω}. (13)

The flow w has zero pressure and stress tensor σ
w

whereas the flow (v, p) has stress tensor
σ

v
. Such flows exert on the particle forces and torques (with respect to O′) given by

F
w

=
∫

S
σ

w
.ndS, C

w
=

∫

S
x′ ∧ σ

w
.ndS, F

v
=

∫

S
σ

v
.ndS, C

v
=

∫

S
x′ ∧ σ

v
.ndS. (14)
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Accordingly, the relations (6) become the well-posed linear system

K.U + V.Ω = {F
w

+ F
v
− σVP(E ∧ B)}/µ, D.U + W.Ω = {C

w
+ C

v
}/µ (15)

for the unknown particle rigid-body motion (U,Ω). This system is shown in this paper to
be entirely determined from the knowledge of a very few surface quantities on the particle
boundary S : the previously-introduced (see §2) surface charge density q and the tractions

f
(i)
L . Such quantities are found to obey the following boundary-integral equations

q(x)

2
+

1

4π

∫

S
{

x − y

|x − y|3
− (−1)i x − y′

|x − y′|3
}.n(x)q(y)dS(y) = −[E.n](x) for x on S, (16)

−
1

8πµ

∫

S
Gjk(x,y)[f

(i)
L .ek](y)dS(y) = [u

(i)
L .ej ](x) for x on S (17)

where in (17) summation over indices k holds and Gjk(x,y) denotes the Cartesian com-
ponent of the so-called Green tensor analytically obtained in [8].

4. Relevant analytical solution for w and use of the reciprocal identity

As the reader may check using the representation (3), one solution to (7) is

w(x) =
σ

8πµ

[
∫

S
q(y){

x − y

|x− y|
− (−1)i x − y′

|x − y′|
}dS(y)

]

∧B for x in Ω ∪ S ∪ Σ. (18)

The associated surface traction σ
w
.n on the particle surface S then reads

[σ
w
.n](x) = −

σ

8π

∫

S
q(y)

[

(x − y).n(x)(x − y) ∧ B + n(x).[(x − y) ∧B](x − y)

|x − y|3

−(−1)i (x − y′).n(x)(x − y′) ∧B + n(x).[(x − y′) ∧ B](x − y′)

|x − y′|3

]

dS(y). (19)

Thus, one can evaluate the required force F
w

and torque C
w

from the knowledge of q.
Furthermore, (v, p) and the flow (u

(i)
L , p

(i)
L ) with stress tensor σ

(i)
L are Stokes flows free from

body force and quiescent far from the particle. Therefore, the usual reciprocal identity
[9] applies and yields

∫

S∪Σ
v.σ

(i)
L .ndS =

∫

S∪Σ
u

(i)
L .σ

v
.ndS. (20)

From the definition (14), the property (20) and the boundary conditions (9)-(10) one then
gets the key relations

F
v
.ei = −

∫

S
w.f

(i)
t dS −

∫

Σ
w.σ

(i)
t .e3dS, C

v
.ei = −

∫

S
w.f (i)

r dS −
∫

Σ
w.σ(i)

r .e3dS. (21)

By virtue of (18), the velocity w required on the boundaries S and Σ when applying the
above links (14) is gained from the charge density q on the particle surface S. Finally,

inspecting (21) shows that one also needs to compute each stress tensors σ
(i)
L on the plane

wall Σ. Again, this is achieved from the knowledge of the traction f
(i)
L on the surface S,

using this time the key integral representation

el.σ
(i)
L (x).ek =

1

8π

∫

S
Tlkj(x,y)[f

(i)
L .ek](y)dS(y) for x in Ω ∪ Σ (22)
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where the components Tlkj are available in closed analytical form in [10]. Those results
are too long to be reproduced here. In exploiting (21) one then makes use of (22) on the
wall Σ.

5. Concluding remarks

Owing to a suitable flow decomposition, it has been possible to reduce the determination
of the particle rigid-body motion by solely appealing to a few surface quantities on the
particle boundary: the charge density and the tractions exerted there when the particle
either translates or rotates in absence of ambient electric and magnetic fields. The re-
sulting boundary approach, valid whatever the particle shape and location, ends up with
seven boundary-integral equations governing those key quantities. Such integral equations
must be numerically solved in general or asymptotically inverted for a distant particle.
Both circumstances will be addressed at the oral presentation which will report numerical
results for spherical and non-spherical insulating particles and differents types (Case 1
and Case 2) of walls.
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