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Abstract
We consider the magnetohydrodynamic (MHD) flow through a square pipe under the

influence of a transverse magnetic field when the outside medium is also electrically con-
ducting. MHD partial differential equations are of convection-diffusion type and it is well
known that convection dominated problems have numerical instabilities on a uniform mesh
with standard FDM. Therefore, an upwind FDM on Shishkin and Bakhvalov typed layer
adapted grids are considered in order to obtain stable solutions for high values of the param-
eters. Results are visualized in terms of contour lines of the velocity and induced current.

1 Introduction
It is already known that there are many applications of MHD pipe flow such as the design
of the cooling systems with liquid metals for nuclear reactors, electromagnetic pumps, MHD
generators, and flowmeters measuring blood pressure, etc. The exact solution of the problem
can be obtained only for some special cases [1, 2]. Therefore, there are many numerical methods
applied to the solution of the MHD pipe flow (see [3, 4, 5] and references there in)

In this paper we consider MHD pipe flow of square cross-section under the influence of a
transverse magnetic field when the outside medium is also electrically conducting. Governing
coupled partial differential equations with coupled boundary conditions are obtained from the
Navier-Stokes equations for conducting fluids, and Maxwells equations for electromagnetic
field through Ohms law. The equations are written in non-dimensional form as [5];

∇2V (x, y) +ReRh
∂B

∂y
(x, y) = −1

∇2B(x, y) +Rm1
∂V

∂y
(x, y) = 0

in Ωin(1)

∇2Bext(x, y) = 0 in Ωext(2)

with the no-slip condition on the pipe wall

V = 0 on ∂Ωin = Γ(3)

and continuity conditions for the induced magnetic fields

B(x, y) = Bext(x, y) , on Γ(4)
1

Rm1

∂B(x, y)

∂n
=

1

Rm2

∂Bext(x, y)

∂n′ , on Γ(5)
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where n and n′ are unit outward normals on Γ for the regions Ωin and Ωext, respectively. Rm1

and Rm2 are the magnetic Reynolds numbers inside the pipe and in external medium.
We assume that cross section of the pipe is square and has sufficient length. The fluid

is flowing through the pipe due to an applied constant pressure gradient ∂p
∂z

, and is viscous,
incompressible, electrically conducting. The electrical permitivity and magnetic permeability
of the fluid are assumed to be close to those of the external space. The axis of the pipe is
coincident with the z-axis, and the y-axis is parallel with the magnetic induction at infinity.
Thus, externally applied magnetic field with a constant intensity B0 is assumed to be in y-
direction. We also assume that the wall of the pipe and the outside medium are having the same
electrical conductivity and magnetic permeability since the thickness of pipe wall is assumed
to be very small (Fig 1). Although the external region is unbounded, an artificial boundary is
considered far away from the pipe in order to perform numerical calculations. It is known that
external induced magnetic field is almost zero at sufficiently far away distance from the pipe
boundary. Therefore, on the artificial boundary Γ∞, the external induced current (Bext) is taken
as either zero (homogenous Drichlet type) or free (homogenous Neumann type).

Figure 1: Problem definition

2 Mathematical Modelling
We have compared two different layer adapted meshes called Shishkin mesh and Bakhvalov
mesh. However, in order to determine the structure of these meshes, we should transform the
coupled equations to decoupled convection-diffusion typed equations as follows; Rewriting the
equations by denoting V1 = V and B1 = ReRh

M
B, where M =

√
ReRhRm1 is the Hartmann

number of the fluid, the system (1) becomes [1]

∇2V1 +M
∂B1

∂y
= −1

∇2B1 +M
∂V1

∂y
= 0.

in Ωin(6)

In order to decouple the equations, define new variables U1(x, y) and U2(x, y) as U1 = V1 +B1

and U2 = V1 −B1 which gives

∇2U1 +M
∂U1

∂y
= −1

∇2U2 −M
∂U2

∂y
= −1.

(7)
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From this form of the equations, it is said that, the problem has a boundary layer in y-
direction depending on the value of the Hartmann number M . Also it is well known that
standard numerical methods for these type of equations are unstable for the large values of
the convection coefficient and fail to give accurate results. Therefore, we should consider a
modified mesh along y-direction. In this study, we will consider two different type of layer
meshes.

a) Shishkin mesh
Shishkin mesh is a piecewise uniform mesh. Depending on the location of the boundary

layer, the domain is divided into two section. The location of the transition point is chosen in a
way that half of the discretization points are placed near the boundary which develops boundary
layer .

If we assume that the domain is [0, 1] and the boundary layer occurs at right hand side
boundary (at the point y = 1), than the location of the transition point λ is calculated as follows
[6];

λ = min(
1

2
,
1

M
lnN)(8)

where N is the total number of the division of the interval [0, 1]. Therefore, N
2

equally spaced
points are on the interval [0, 1 − λ] and the N

2
of them are again equally spaced on the interval

[1− λ, 1]. Explicitly,

yi =

{
(1− λ) 2i

N
i = 0, ..., N/2

(1− 2λ) + 2λi
N

i = N/2 + 1, ..., N.
(9)

b) Bakhvalov mesh
Bakhvalov mesh is defined as the modified version of Shishkin mesh. Similar to Shishkin

mesh, the transition point is calculated as

λ = min(
1

2
,
2

M
lnN).(10)

Again N
2

equally spaced points lie on the interval [0, 1 − λ]. However, boundary layer part of
the points are not equally spaced, they are distributed exponentially. Explicit formulation for
the location of the points is given as [6];

yi =

{
(1− λ) 2i

N
i = 0, ..., N/2

1 + 2
M

ln
(
N2−2(N−i)(N−1)

N2

)
i = N/2 + 1, ..., N.

(11)

Since, our problem is symmetric with respect to x-axis, the boundary layers exist at both
upper and lower walls of the pipe. Therefore, location of the adaptive mesh points are symmetric
also with respect to x-axis.

The difference operators for the first and second order derives are defined as usually for
non-uniform mesh. The continuity of the induced magnetic field and the relationship between
the solution inside the pipe and the solution on the external region is satisfied with the coupled
boundary conditions. An upwind discretized form is as;

Top : Bi,j = Bext
i,j =

mtyB
ext
i,j+1 +Bi,j−1

1 +mty

Bottom : Bi,j = Bext
i,j =

Bi,j+1 +mbyB
ext
i,j−1

1 +mby

Left : Bi,j = Bext
i,j =

Bi,j+1 +mlxB
ext
i,j−1

1 +mlx

Right : Bi,j = Bext
i,j =

mrxB
ext
i+1,j +Bi−1,j

1 +mrx

where mty =
Rm1(yi−yi−1)
Rm2(yi+1−yi)

,mby =
Rm1(yi+1−yi)
Rm2(yi−yi−1)

,mlx = Rm1(xi+1−xi)
Rm2(xi−xi−1)

,mrx = Rm1(xi−xi−1)
Rm2(xi+1−xi)

.
The induced magnetic field values at the corner points are assumed to be the average of the

neighbouring points.
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3 Numerical Results and Discussion
We consider a long pipe of square cross-section defined by {(x, y) : −1 ≤ x, y ≤ 1}. The
artificial boundary Γ∞ is assumed as {|x| = 3,−3 ≤ y ≤ 3

∪ |y| = 3,−3 ≤ x ≤ 3}. The pipe
region is discretized by 21 × 21 mesh points both in x and y-directions. The behaviors of
the velocity of the fluid and inside and outside induced currents (induced magnetic fields) are
visualized in terms of contour plots for very high values of magnetic Reynolds numbers Rm1,
Reynolds number Re and magnetic pressure number Rh of the fluid.

For moderate values of the Hartmann number (Rm1 = 100, Rm2 = 1, Re = 1 and
Rh = 10), there is only slight disturbance on the velocity values obtained from uniform mesh.
However, as Rm1 getting large (Rm1 = 1000), the need and effect of the stabilization are seen
more clearly especially from velocity values. Unfortunately, stabilization with Shishkin typed
mesh is not sufficient for stable solutions and Bakhvalov typed mesh is very effective compared
to others. The numerical instabilities also start to appear in the induced magnetic field values
obtained from uniform mesh (Figure 2).

Figure (3) shows equal velocity and induced current lines, respectively, for a very large value
of Reynolds number Re = 100 when Rm1 = 100, Rm2 = 1 and Rh = 10. It seen from that,
the effect of the stabilization in Bakhvalov types meshes is also seen from the induced current
contours additional to the velocity contours. The similar behaviour is also seen from Figure
(4) that displays the induced magnetic field contours for the case of Neumann type boundary
condition on the artificial boundary.
Acknowledgements This work is supported by Karadeniz Technical University by Scientific
Research Project (BAP) under Grant Number #10464.

(a) Velocity

(b) Induced currents

Figure 2: Uniform (left), Shishkin(center) and Bakhvalov(right) typed solution contours for
Rm1 = 1000, Rm2 = 1, Re = 1, Rh = 10
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(a) Velocity

(b) Induced currents

Figure 3: Uniform (left), Shishkin(center) and Bakhvalov(right) typed solution contours for
Rm1 = 100, Rm2 = 1, Re = 100, Rh = 1

Figure 4: Uniform (left), Shishkin(center) and Bakhvalov(right) typed solution contours for
Rm1 = 1000, Rm2 = 1, Re = 1, Rh = 10 and Neumann type boundary condition on the
artificial boundary
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