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Abstract. A coupled finite difference-boundary element computational procedure for the sim-
ulation of turbulent liquid metal flow in a straight rectangular duct in the presence of an exter-
nally imposed magnetic field at finite magnetic Reynolds number (Rm) is presented. Periodicity
is assumed in the streamwise direction and the duct walls are considered to be perfectly insu-
lating. Details of the algorithm for the coupled electromagnetic solution of the interior and
exterior will be discussed along with laminar flow results using idealized pseudo-vaccum mag-
netic boundary conditions.

Introduction. Turbulent conducting flows at finite magnetic Reynolds numbers occur in mag-
netohydrodynamic turbulence in plasmas, and in the generation of magnetic fields by the dy-
namo effect. In simulations the former case is typically studied as box turbulence without walls,
and the latter in a closed spherical fluid domain. We are interested in turbulent liquid-metal duct
flows in the presence of an externally generated magnetic field, which is of interest for metallur-
gical applications such as in the continuous casting of steel and aluminum. It can be expected
to show complex interactions between the magnetic field and the flow. Studies of these inter-
actions also guide the quantification of the reaction time in the measurement of transient liqud
metal flows through Lorentz force velocimetry.

The magnetic Reynolds number Rm is a measure of the relative magnitude of the induced
secondary magnetic field to the imposed magnetic field. We focus on the computation of veloc-
ity and magnetic fields in the interior of the duct, in the regime of Rm ∼ 1. Since the secondary
magnetic field (which is significant) also pervades the space outside the duct, proper modelling
of the magnetic field in the interior requires a consistent treatment of the magnetic field across
the duct boundaries. This is typically done through either of the following two approaches. The
first approach is to extend the computational domain to model the magnetic field also outside the
fluid domain. The second approach is to model the magnetic field only inside the duct but with
magnetic boundary conditions that arise from the boundary integral formulation of the exterior
field. Extending the domain to the exterior is computationally costly and also inconvenient
for the parallelization of an existing DNS code [1]. Furthermore, since the exterior secondary
magnetic field in itself is not in our interest, we prefer the boundary integral approach.

Characterizing the exterior magnetic field by the boundary integral procedure gives rise to
non-local boundary conditions [2]. Such boundary conditions typically arise in the non-spectral
simulation of dynamo and astrophysical processes. A hybrid finite volume-boundary element
computational procedure has been first proposed by Iskakov et al.[2, 3] and since then has



been applied by various researchers to simulate kinematic problems wherein the velocity field
is given and the evolution of the magnetic field is sought (see, e.g., [4, 5]). In this work, we
attempt to perform a full dynamic simulation of the flow and magnetic fields evolving together
in the case of an MHD duct flow. A numerical procedure for the full MHD solution along with
laminar flow solutions with idealized magnetic boundary conditions will be presented.

Governing equations and numerical procedure We consider the incompressible flow of an
electrically conducting fluid driven by a mean pressure gradient in a straight square duct with
an imposed magnetic fieldB0. Flow crossing the magnetic field contributes to a current density
J which forms the source of a secondary magnetic field B that acts as a perturbation to the
primary imposed magnetic field. The total magnetic field BT = B0 + B interacts with the
current density J to produce a Lorentz force F = J × BT which acts as a body force on
the flow field. This body force affects the flow field which in turn affects the magnetic field.
The physics of this coupled evolution of the velocity and magnetic fields is governed by the
Navier-Stokes and the magnetic field transport equations respectively with the constraints of
solenoidality of both the fields. Using U , L, L/U , ρU2, B0 and σUB0 as the scales for the
velocity, length, time, pressure, magnetic field and current density respectively, the governing
equations in the interior of the duct in non-dimensional form are
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∇ · b = 0, (4)
u = v = w = 0 at y, z = ±1, periodicity in x direction (5)

where x, y and z denotes the streamwise, spanwise and wall normal directions respectively and
all the lower case variables correspond to non-dimensional quantities. The mean cross-sectional
velocity U , the half width of the channel L, and a characteristic value of the imposed magnetic
field strengthB0 have been taken for non-dimensionlization. Parameters in the equations are the
Reynolds number Re ≡ UL/ν, the magnetic interation parameter N ≡ Ha2/Re, where Ha ≡
B0L (σ/ρν)1/2 is the Hartmann number and the magnetic Reynolds number Rm ≡ UL/λ. The
secondary magnetic field in the exterior of the duct is curl free and hence represented as the
gradient of a scalar potential, b = −∇ψ. The solenoidal condition leads to the governing
equation in the exterior as

∇2ψ = 0 (6)

The numerical solution is carried out on a non-uniform rectangular grid, with clustering of
grid points near the walls to resolve the Hartmann layers and side layers that are characteristic
of duct MHD flows. A collocated grid arrangement is used with the variables v, p and b stored
at the same grid points. A finite difference scheme with semi-implicit time stepping is used
for the discretization of the momentum and the magnetic field transport equations, wherein the
diffusive terms are treated in an implicit manner. For the momentum equation, a fractional
time step procedure is adopted to first compute an intermediate velocity field that is in turn
projected onto a solenoidal velocity field through a pressure correction step. Poisson equations
for the intermediate velocities and pressure are transformed into the Fourier space with respect
to x and are solved using the software package FISHPACK [6]. The mean pressure gradient is



adjusted in order to obtain a constant volume flux in the duct. Details of the numerical scheme
for the solution of the velocity field can be found in Krasnov et al. [1].

Semi-implicit discretization of Eq.(3) with further simplification yields

−fbn+1 +∇2bn+1 = −fq (7)

for the magnetic field perturbation at the current time step n + 1, where f is a discretization
parameter and q contains the convective and field stretching terms at the previous time steps n
and n − 1. Since the domain is periodic in the streamwise direction, introducing the Fourier
transform along the x-direction leads to

b(x, y, z) =

k=Nx
2
−1∑

k=−Nx
2

b̂(y, z)eiαkx (8)

where αk = 2πk/Lx is the streamwise wavenumber, Lx being the length of the duct and Nx the
number of grid points along the length of the duct. Substituting this in Eq.(7) and dropping the
superscript yields

−(f + α2
k)b̂+∇2

yzb̂ = −f q̂ (9)

which is to be solved for the Fourier coefficients b̂x, b̂y and b̂z in the interior of the duct. How-
ever, since Eq.(4) acts as an additional constraint on the magnetic field and overdetermines the
sytem along with Eq.(3), we solve Eq.(9) only for the components b̂y and b̂z and reconstruct the
component b̂x from the condition
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)
, k 6= 0 (10)

In this way the solenoidal property of the resulting magnetic field is preserved. For the mode
with k = 0, the component b̂x is decoupled from the other two components and hence Eq.(9) is
used to compute b̂x with Dirichlet boundary conditions. The magnetic field in the real space is
recovered from the Fourier components b̂x, b̂y and b̂z through the inverse Fourier transform.

Evaluation of the components b̂y and b̂z at each wavenumber requires boundary conditions
that are consistent with the exterior field, the formulation of which is described here. The
Fourier representation of Eq.(6) leads to the Helmholtz equation (∇2

yz−α2
k)ψ̂ = 0, which using

the Green’s second identity can be represented in the boundary integral form as

cψ̂(r′) = P.V.
∮
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∂G

∂n
(r′, r)]dl(r) (11)

for the values of ψ̂ on the rectangular boundary, where n represents the boundary normal di-
rection, G(r′, r) is the Green’s function of the Helmholtz operator [7] about the pole r′ =
yey + zez and the integration along the rectangular contour is in the sense of a Cauchy princi-
pal value. Eq.(10) is non-local in nature and is discretized using the boundary element method
[8]. This involves dividing the rectangular contour into a number of small line elements called
boundary elements (see Figure 1) and approximating the integral equation as the sum of inte-
grals along each of these boundary elements. The grid points that store the variables lie at the
ends of each of the elements and the variables ψ̂ and b̂n are assumed to be piecewise linear
within each element. The integrals are evaluated numerically along all elements except at the
pole using a four-point Gaussian quadrature in order to accurately account for the steep gradi-
ents in the Green’s function. At the pole, the Green’s function has a logarithmic singularity and
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Figure 1: Grid with boundary elements and nodes used for the solution of the integral equation
for ψ̂.

is dealt with analytical integration over the element containing the pole. The boundary element
discretization yields the discrete form of Eq.(11) which is a fully occupied linear system of
equationsAψ̂ = d whereA is a matrix and d a vector.

Eq.(12) along with b̂τ = −∂ψ̂
∂τ

and the divergence free condition provides the boundary con-
ditions for computing b̂y and b̂z from Eq.(9), which is solved by a coupled iterative procedure.
The procedure is computationally intensive due to the fact that non-local boundary conditions
translate into fully occupied linear systems unlike the sparse sytems that arise from local bound-
ary conditions. The current density j is subsequently computed from the magnetic field b using
the Ampère’s law j = (∇× bT )/Rm.

Results and discussion. Simulations with pseudo vaccum magnetic boundary conditions were
first performed in order to validate the solution of the magnetic field in the duct interior. For
this purpose, it is assumed that for perfectly insulating walls, jn = 0 is realized with vanishing
tangential components of the magnetic field as

bτ1, bτ2 = 0,
∂bn
∂n

= 0 at y, z = ±1 (12)

the Neumann condition on bn being obtained from Eq.(4). Starting with an initial laminar duct
velocity profile and an imposed uniform magnetic field along the z-direction, the evolution of
the velocity and magnetic fields is simulated at Rm = 100, until a steady state is reached. The
contour of the streamwise velocity profile along with the corresponding magnetic field lines (in
the x-z plane) are displayed in Figure 2.

It is observed that the velocity reaches the steady Hartmann-like profile through a series
of oscillations that are damped eventually by diffusion, unlike the quasistatic regime which is
diffusion dominated. These oscillatory states are remniscent of Alfvén waves that are typical of
high Rm MHD flows. The corresponding stretching of the magnetic field lines is also observed.

Simulation of turbulent MHD duct flow with full treatment of the magnetic boundary condi-
tions as described in the previous section along with detailed validation of the procedure using a
quasistationary approach in the limiting case of low magnetic Reynolds number is in progress.
Benchmarking of the procedure’s numerical efficiency will be made with subsequent studies of
MHD turbulence at finite magnetic Reynolds number.



Figure 2: Contours of streamwise velocity profile at Re = 2000, Rm = 100, Ha = 100 in a
cross-section (left). The corresponding magnetic field lines in the x-z plane, y = 0 (right). Grid
size : 16× 128× 128.
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