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Abstract

We put forward a new type of spectral method for the direct @cal simula-
tion of flows where anisotropy or very fine boundary layers@esent. The mean
idea is to take advantage of the fact that such structuredisseative and that
their presence should reduce the number of degrees of freetlthe flow. We ap-
plied the new method to calculate the evolution of freelyay@eg MHD turbulence
between walls. Comparing our results with the cases catulliata 3D periodic
domain enables us to quantify the influence of the channd$walthe character of
a freely decaying MHD turbulence.

1 Introduction

Simulations of liquid metal flows in channel and duct confagions under a strong magnetic
field pose a difficult problem for existing numerical method$ie main obstacle is the linear
increase in number of modes required to resolve thin Hamnferundary layers with the in-
tensity of the magnetic field. Yet, the enormous dissipation incurred by friction andidou
dissipation in these layers decimates the degree of freedfitime flow whenHa becomes large.
Their number can be estimated through the dimensgigrof the attractor of the underlying
system, for which an upper bound was shown to scaléaas [4]. The fact that the number of
modes needed to resolve the flow completely increases inmeahsimulations at higha is
therefore a property of the spectral method based on thdgequoials, but does not reflect any
physical constraint.

To overcome this problem we developed a new approach to tinemcal calculations describ-
ing these flows. The solution of the flow is expressed in a basgenfunctions of the linear
part of the governing equations and its adjoint. We showithiditis approach the computational
cost does not depend on the thickness of boundary layer aneftine it allows for performing
calculations for high magnetic fields.

2 Governing equations

Flows of liquid metals in engineering applications are Uliguwdescribed within the frame of the
Low Magnetic Reynolds numbeF(n) approximation. This applies to problems where the flow
Is neither intense nor conductive enough to induce a magfeld comparable to an externally
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applied one. The full system of the induction equation amdNlavier-Stokes equations for an
incompressible fluid are then approximated to the first omlétn, which represents the ratio
of these two fields. This leads to the following system [6]:
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whereu denotes fluid velocityB - magnetic field;j - electric current density; - kinematic
viscosity,o - electrical conductivity® - electric potential. We consider a channel flow with a
homogeneous transverse magnetic fiBkel and impermeableu(,,.; = 0), electrically insu-
lating (j - n|..; = 0) walls located at = +L/2. In thezy directions we adopt the periodic
boundary conditions with period. Under this assumptions and using the reference dcale
time L? /v and velocityv/ L the above set of equations can be expressed in dimensidotess
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whereHa = LB+/o/pv is the Hartman number anfd denotes orthogonal projection onto the
subspace of solenoidal fields.

3 Numerical methods

We express the solution of eq. (5) using a basis of eigenseofdhe operatof that represents
its linear part. The features of flows at higfu are strongly determined by the properties of
this operator. Because of this, the set of modes built ousaigenfunctions elements includes
structures that are actually present in the flow. Laminartarimilent Hartmann boundary layers
that develop along the channel walls appear, in partica&huilt-in features of these modes
[2, 5]. They are therefore natural candidates to be usedeasegits of a functional basis in a
numerical spectral scheme. Moreover, these modes all lregadive eigenvalues, and it can be
shown that to resolve the flow completely, it is only necessartake into account all modes
with eigenvalue\ with a modulus below a maximum,,..|, such that their total number scales
as Re*/Ha [4]. Since the operatof represents the sum of viscous and Joule dissipation, the
set of modes defined in this way is in fact the seteafst dissipative modes. For sufficiently
large values ofHa, this number becomes significantly smaller than the numbé&oarier or
Tchebychev modes necessary to resolve the Hartmann |&}ers |

The main difficulty of solving equation (5) using the leadgipative modes lies in calcu-
lating non linear terms. We use a pseudospectral approaticaoulate them in real space.
Therefore we need a method to reconstruct a spectral ceeifsgj, of physical vector fields
known at the discrete set of points in spageThis problem can be formulated as a set of linear
equations for unknown spectral components:

> gnen(x) =G(x;) i=1...N (6)

wheree, constitutes are base of eigenvectors, éntepresents the decomposed vector field.
As the coefficients in this set of equations are constanhdwisingle numerical run, it is worth
performingLU decomposition of the corresponding matrix at the beginoirgalculations and
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later use it to efficiently find the spectral decompositioMareover it enables us to save even
more CPU time by omitting calculation of coefficients whichuhan't be used in further calcu-
lations. For example we are interested only in ghecoefficients corresponding to divergence
free modes. Neglecting coefficients corresponding toatrohal modes is an equivalent of per-
forming projection representing by operat®rin eq. (5). The technique described above has
the advantage that the obtained spectral decompositioadepes exactly the physical field on
the given set of discretization points. Therefore momenamah energy are conserved by this
procedure.

The spectral method described above was implemented byfymagithe spectral code
TARANG developed by [7].

To validate the present numerical scheme we compared thiksréproduces with those of
three-dimensional, time-dependent direct numerical Etians performed with a code based
on the open source framework OpenFOAM, on test cases of/fdeglaying MHD turbulence.
OpenFOAMis based on the finite volume approach and uses@ceated grid. Our numerical
domain was a cube of dimensidndivided uniformly into/V cells in every direction. In order
to calculate correctly the electric current density in lrah layers we always resolve each of
them with at least three computational cells in théirection as in [1]. Following the DNS of
decaying MHD turbulence in a three-dimensional periodimdm by [3], the initial conditions
consist of a random gaussian velocity field wiftk) ~ exp [(—k/k,)?] wherek, = 87/L. This
corresponds to the energy spectrém- k* exp [—2(k/k,)?]. For this choice of initial velocity
field, the integral scales of turbulent motions is given by /27 /k,. The velocity spectrum
was normalised in such a way that cell sizes corresporig to.4 wherelx = [Re~3/* is the
Kolmogorov length scale and the Reynolds number in its defimiRe = «'l/v is based on
[ and velocityw’ = u(k = k,). With this choice, the Reynolds number and the Hartmann
number are linked byRe = 0.33Ha*/?. This strategy allows us to calculate the most intense
flow possible whilst minimizing mesh-induced numericabesrat a given mesh size, since the
mesh is always uniform.

For the reference case, we have choslen= 56, a value within reach with a traditional
code such as OpenFOAM. Adopting the procedure presentedwiops paragraph for Open-
FOAM calculations we us&V, = N, = N, = 170 number of points in every direction and
initial conditions characterized by Reynolds number= 28. For the corresponding spectral
calculations we use a resolution 1.5 times highér & N, = N, = 256) in order to reduce the
dealiasing errors. The initial conditions were chosen shsuway that their physical expansion
ongridN, = N, = N, = 170 was identical to the initial conditions used in the caldolas
with OpenFOAM.

We have followed the evolution of the initial conditions upthe time corresponding to
30ty wheret; = 0 B?/p is the timescale of Joule dissipation. We have comparedvbiatéon
of global kinetic energy, the viscous and magnetic disgpattes. All these quantities exhibit
guantitatively and qualitatively the same behaviour irhbatdes. The spectral codes exhibits
a slightly smaller values of viscous dissipation then thaiolume code and slightly larger
magnetic dissipation (see fig. 3).

4 Decaying turbulence

We used the potential of the new method to study the behawbtive MHD turbulence in
two sets of calculations with higher values of the magnegéldfiHa = 112 and Ha = 224.
We started both simulations from exactly the same initialdibons characterized by Reynolds
numberRe = 178 and evolved them up t60¢;. The fig. 4 shows the evolution of global
kinetic energy, the viscous and magnetic dissipation r&tesboth values of the magnetic field
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Figure 1: Total kinetic energy (normalized by its initialw@) and viscous and magnetic dissi-
pation rates (normalized by initial kinetic energy dividgd: ;) in test case wittHa = 56 in the
function of Joule times. The lines and points respectivefyresents the results obtained with
finite volume and spectral codes.
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Figure 2: Total kinetic energy (normalized by its initiallwe) and viscous and magnetic dis-
sipation rates (normalized by initial kinetic energy dettbyt ;) in case with insulating walls
for Ha = 112 (left panel) andHa = 224 (right panel) in the function of Joule times.

the flow evolution can be split into two phases. In the firstgghthe energy decay is dominated
by Joule dissipation. During this phase the flows changebdstate of two-dimensionality
due to the diffusion of the momentum along the magnetic fieldhe second phase the energy
Is dissipated mainly by viscosity with the ratio of visconsmagnetic dissipation reaching its
maximum value of- 1.7 and then slightly decreasing in time. Our results indic#tesin this
viscously dominated phase the ratio of viscous to Joulepdiiens scales as time multiplied
by Ha. It is the phase when the flow is strongly two dimensional aseévolution is governed
by interaction between 2D vortices and the walls.

To characterize the influence of the walls we performed twditewhal sets of calculations
starting from exactly the same initial conditions as befauewith the periodic boundary con-
ditions imposed also in all three directions. The resukspesented on fig. 4. In the beginning
the dissipation rate is again dominated by Joule dissipafibis phase is very similar to the one
in cases with insulating walls. In the second phase the flag#n strongly two dimensional
and the energy is dissipated mainly by viscosity. Howevedtbule dissipation decreases much
faster with time with the ratio of viscous to Joule dissipai monotonically increasing with
time. Consequently at the end of the simulation the Joulepdisen is negligible, which is in
strong contrast to simulations with insulating walls.
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Figure 3: Total kinetic energy (normalized by its initiallwa) and viscous and magnetic dis-
sipation rates (normalized by initial kinetic energy detblby ;) in case with fully periodic
domain forHa = 112 (left panel) andHa = 224 (right panel) in the function of Joule times.

5 Conclusions

We presented a new spectral method to calculate MHD flows @amroél configuration. It is
based on using the sequence of least dissipative eigenrfrogdeshe dissipation operator in-
stead of the traditional Fourier or Tchebychev basis. Wealuks method to calculate the
evolution of freely decaying MHD turbulence between watls fla = 112 and Ha = 224.
We compared the result with the cases calculated in a 3Dgiertmmain, which allowed us
to quantify the influence of the channel walls on the tempevalution of viscous and Joule
dissipations.
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