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Abstract

We put forward a new type of spectral method for the direct numerical simula-
tion of flows where anisotropy or very fine boundary layers arepresent. The mean
idea is to take advantage of the fact that such structures aredissipative and that
their presence should reduce the number of degrees of freedom of the flow. We ap-
plied the new method to calculate the evolution of freely decaying MHD turbulence
between walls. Comparing our results with the cases calculated in a 3D periodic
domain enables us to quantify the influence of the channel walls on the character of
a freely decaying MHD turbulence.

1 Introduction

Simulations of liquid metal flows in channel and duct configurations under a strong magnetic
field pose a difficult problem for existing numerical methods. The main obstacle is the linear
increase in number of modes required to resolve thin Hartmann boundary layers with the in-
tensity of the magnetic fieldB. Yet, the enormous dissipation incurred by friction and Joule
dissipation in these layers decimates the degree of freedomof the flow whenHa becomes large.
Their number can be estimated through the dimensiondM of the attractor of the underlying
system, for which an upper bound was shown to scale asHa−1 [4]. The fact that the number of
modes needed to resolve the flow completely increases in numerical simulations at highHa is
therefore a property of the spectral method based on these polynomials, but does not reflect any
physical constraint.
To overcome this problem we developed a new approach to the numerical calculations describ-
ing these flows. The solution of the flow is expressed in a base of eigenfunctions of the linear
part of the governing equations and its adjoint. We show thatin this approach the computational
cost does not depend on the thickness of boundary layer and therefore it allows for performing
calculations for high magnetic fields.

2 Governing equations

Flows of liquid metals in engineering applications are usually described within the frame of the
Low Magnetic Reynolds number (Rm) approximation. This applies to problems where the flow
is neither intense nor conductive enough to induce a magnetic field comparable to an externally
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applied one. The full system of the induction equation and the Navier-Stokes equations for an
incompressible fluid are then approximated to the first orderin Rm, which represents the ratio
of these two fields. This leads to the following system [6]:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ν∆u + j × B , (1)

∇ · u = 0 , (2)

∇ · j = 0 , (3)

j = σ(−∇Φ + u × B) , (4)

whereu denotes fluid velocity,B - magnetic field,j - electric current density,ν - kinematic
viscosity,σ - electrical conductivity,Φ - electric potential. We consider a channel flow with a
homogeneous transverse magnetic fieldBez and impermeable (u|wall = 0), electrically insu-
lating (j · n|wall = 0) walls located atz = ±L/2. In thexy directions we adopt the periodic
boundary conditions with periodL. Under this assumptions and using the reference scaleL,
timeL2/ν and velocityν/L the above set of equations can be expressed in dimensionlessform:

∂u

∂t
+ P (u · ∇)u = ∆u − 1

Ha2
∆−1∂zzu , (5)

whereHa = LB
√

σ/ρν is the Hartman number andP denotes orthogonal projection onto the
subspace of solenoidal fields.

3 Numerical methods

We express the solution of eq. (5) using a basis of eigenvectors of the operatorL that represents
its linear part. The features of flows at highHa are strongly determined by the properties of
this operator. Because of this, the set of modes built out of its eigenfunctions elements includes
structures that are actually present in the flow. Laminar andturbulent Hartmann boundary layers
that develop along the channel walls appear, in particular,as built-in features of these modes
[2, 5]. They are therefore natural candidates to be used as elements of a functional basis in a
numerical spectral scheme. Moreover, these modes all have negative eigenvalues, and it can be
shown that to resolve the flow completely, it is only necessary to take into account all modes
with eigenvalueλ with a modulus below a maximum|λmax|, such that their total number scales
asRe2/Ha [4]. Since the operatorL represents the sum of viscous and Joule dissipation, the
set of modes defined in this way is in fact the set ofleast dissipative modes. For sufficiently
large values ofHa, this number becomes significantly smaller than the number of Fourier or
Tchebychev modes necessary to resolve the Hartmann layers [2].

The main difficulty of solving equation (5) using the least dissipative modes lies in calcu-
lating non linear terms. We use a pseudospectral approach and calculate them in real space.
Therefore we need a method to reconstruct a spectral coefficientsgn of physical vector fields
known at the discrete set of points in spacexi. This problem can be formulated as a set of linear
equations for unknown spectral components:

∑

n

gnen(xi) = G(xi) i = 1 . . . N (6)

whereen constitutes are base of eigenvectors, andG represents the decomposed vector field.
As the coefficients in this set of equations are constant during a single numerical run, it is worth
performingLU decomposition of the corresponding matrix at the beginningof calculations and
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later use it to efficiently find the spectral decompositions.Moreover it enables us to save even
more CPU time by omitting calculation of coefficients which wouldn’t be used in further calcu-
lations. For example we are interested only in thegn coefficients corresponding to divergence
free modes. Neglecting coefficients corresponding to irrotational modes is an equivalent of per-
forming projection representing by operatorP in eq. (5). The technique described above has
the advantage that the obtained spectral decomposition reproduces exactly the physical field on
the given set of discretization points. Therefore momentumand energy are conserved by this
procedure.

The spectral method described above was implemented by modifying the spectral code
TARANG developed by [7].

To validate the present numerical scheme we compared the results it produces with those of
three-dimensional, time-dependent direct numerical simulations performed with a code based
on the open source framework OpenFOAM, on test cases of freely decaying MHD turbulence.
OpenFOAMis based on the finite volume approach and uses a co-located grid. Our numerical
domain was a cube of dimensionL divided uniformly intoN cells in every direction. In order
to calculate correctly the electric current density in Hartman layers we always resolve each of
them with at least three computational cells in thez direction as in [1]. Following the DNS of
decaying MHD turbulence in a three-dimensional periodic domain by [3], the initial conditions
consist of a random gaussian velocity field withu(k) ∼ exp [(−k/kp)

2] wherekp = 8π/L. This
corresponds to the energy spectrumE ∼ k4 exp [−2(k/kp)

2]. For this choice of initial velocity
field, the integral scales of turbulent motions is given byl =

√
2π/kp. The velocity spectrum

was normalised in such a way that cell sizes correspond tolK/1.4 wherelK = lRe−3/4 is the
Kolmogorov length scale and the Reynolds number in its definition Re = u′l/ν is based on
l and velocityu′ = u(k = kp). With this choice, the Reynolds number and the Hartmann
number are linked byRe = 0.33Ha4/3. This strategy allows us to calculate the most intense
flow possible whilst minimizing mesh-induced numerical errors at a given mesh size, since the
mesh is always uniform.

For the reference case, we have chosenHa = 56, a value within reach with a traditional
code such as OpenFOAM. Adopting the procedure presented in previous paragraph for Open-
FOAM calculations we useNx = Ny = Nz = 170 number of points in every direction and
initial conditions characterized by Reynolds numberRe = 28. For the corresponding spectral
calculations we use a resolution 1.5 times higher (Nx = Ny = Nz = 256) in order to reduce the
dealiasing errors. The initial conditions were chosen in such a way that their physical expansion
on gridNx = Ny = Nz = 170 was identical to the initial conditions used in the calculations
with OpenFOAM.

We have followed the evolution of the initial conditions up to the time corresponding to
30 tJ wheretJ = σB2/ρ is the timescale of Joule dissipation. We have compared the evolution
of global kinetic energy, the viscous and magnetic dissipation rates. All these quantities exhibit
quantitatively and qualitatively the same behaviour in both codes. The spectral codes exhibits
a slightly smaller values of viscous dissipation then the finite volume code and slightly larger
magnetic dissipation (see fig. 3).

4 Decaying turbulence

We used the potential of the new method to study the behaviourof the MHD turbulence in
two sets of calculations with higher values of the magnetic field: Ha = 112 andHa = 224.
We started both simulations from exactly the same initial conditions characterized by Reynolds
numberRe = 178 and evolved them up to60 tJ . The fig. 4 shows the evolution of global
kinetic energy, the viscous and magnetic dissipation rates. For both values of the magnetic field
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Figure 1: Total kinetic energy (normalized by its initial value) and viscous and magnetic dissi-
pation rates (normalized by initial kinetic energy dividedby tJ ) in test case withHa = 56 in the
function of Joule times. The lines and points respectively represents the results obtained with
finite volume and spectral codes.
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Figure 2: Total kinetic energy (normalized by its initial value) and viscous and magnetic dis-
sipation rates (normalized by initial kinetic energy divided bytJ ) in case with insulating walls
for Ha = 112 (left panel) andHa = 224 (right panel) in the function of Joule times.

the flow evolution can be split into two phases. In the first phase the energy decay is dominated
by Joule dissipation. During this phase the flows changes to the state of two-dimensionality
due to the diffusion of the momentum along the magnetic field.In the second phase the energy
is dissipated mainly by viscosity with the ratio of viscous to magnetic dissipation reaching its
maximum value of∼ 1.7 and then slightly decreasing in time. Our results indicatesthat in this
viscously dominated phase the ratio of viscous to Joule dissipations scales as time multiplied
by Ha. It is the phase when the flow is strongly two dimensional and its evolution is governed
by interaction between 2D vortices and the walls.

To characterize the influence of the walls we performed two additional sets of calculations
starting from exactly the same initial conditions as beforebut with the periodic boundary con-
ditions imposed also in all three directions. The results are presented on fig. 4. In the beginning
the dissipation rate is again dominated by Joule dissipation. This phase is very similar to the one
in cases with insulating walls. In the second phase the flow isagain strongly two dimensional
and the energy is dissipated mainly by viscosity. However the Joule dissipation decreases much
faster with time with the ratio of viscous to Joule dissipations monotonically increasing with
time. Consequently at the end of the simulation the Joule dissipation is negligible, which is in
strong contrast to simulations with insulating walls.
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Figure 3: Total kinetic energy (normalized by its initial value) and viscous and magnetic dis-
sipation rates (normalized by initial kinetic energy divided by tJ ) in case with fully periodic
domain forHa = 112 (left panel) andHa = 224 (right panel) in the function of Joule times.

5 Conclusions

We presented a new spectral method to calculate MHD flows in channel configuration. It is
based on using the sequence of least dissipative eigenmodesfrom the dissipation operator in-
stead of the traditional Fourier or Tchebychev basis. We used this method to calculate the
evolution of freely decaying MHD turbulence between walls for Ha = 112 andHa = 224.
We compared the result with the cases calculated in a 3D periodic domain, which allowed us
to quantify the influence of the channel walls on the temporalevolution of viscous and Joule
dissipations.
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