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Abstract. We consider the transient amplification of primary and secondary linear perturba-

tions in a Hartmann channel flow at low and moderate Hartmann numbers. We explore primary

perturbations of different vertical symmetry in order to examine influences due to the finite

distance between the channel walls. Secondary perturbations at opposite walls can be shown

to interact at larger Hartmann numbers than primary perturbations. Strong amplification of

secondary perturbations due to inflectional instability mechanisms is found when the primary

perturbations have a sufficiently large amplitude.

Introduction. When an incompressible and electrically conducting liquid flows between
two unbounded parallel plates under the presence of an uniform and constant magnetic
field perpendicular to the walls, the profile of the mean flow becomes flat in the core
due to the interaction of the induced electric current with the imposed magnetic field.
Meanwhile, two thin boundary layers develop at the walls. They are named after Julius
Hartmann [1], who first investigated MHD channel flow in 1937. The thickness δHa of
these layers is inversely proportional to the magnetic field B, which is characterized by
a non-dimensional parameter called the Hartmann number Ha. When Ha is sufficiently
large, the Hartmann layers at the top and the bottom walls do not overlap and can be
considered as independent from each other. An isolated Hartmann layer could become
unstable when the local Reynolds number R, which is defined with δHa as length scale,
exceeds some threshold.

The stability of Hartmann layers has been explored experimentally in laminarization
studies to determine at which values of Rc turbulent flow becomes laminar. Early works
showed that re-laminarization may occur in the range 150 < Rc < 250. A recent exper-
iment [2] found Rc ∼ 380 from measurements of the friction coefficient as function for
R. The same Rc was observed for the inverse process of transition from laminar flow to
turbulence.

The stability of Hartmann layers was first studied by normal mode analysis. It turned
out that exponential growth of infinitesimal perturbations appears at values of R two
orders of magnitude higher than Rc in the experiments [3]. This is similar to other
shear flows, e.g. pipe flow, where classical normal mode stability analysis fails to predict
transition. Recent developments in linear stability theory revealed that the transient
amplification of non-modal perturbations may play a significant role in the so-called sub-
critical transition of shear flows [4]. For plane channel flow, streamwise vortices provide
the strongest amplification. Such streamwise vortices interact with the mean flow and
evolve into streamwise streaks, which are viewed a key element in the transition scenario
and the dynamic processes sustaining turbulence. Based on these ideas, Krasnov et al.



[5] explored a reasonable two-step transition scenario for the Hartmann layer by direct
numerical simulations (DNS). It consists of (i) large transient growth of initially small,
streamwise-independent disturbances that leads to a modulation of the laminar Hartmann
flow, and (ii) the linear instability of the modulated flow with respect to some three-
dimensional secondary perturbations. Transition could be triggered when both R and the
amplitude of primary and secondary perturbations was sufficiently large. In this way, Rc

was found to be between 350 and 400, which is already very close to the experimental
results. However, in this work the secondary perturbations were simply strong random
noise.

The purpose of the present paper is to analyze the two-step transition scenario in more
detail. Guided by similar works on secondary perturbations in hydrodynamic channel
flows, we focus on optimal perturbations evolving on Hartmann layer streaks and examine
the residual interaction between opposite Hartmann layers at low and moderate Hartmann
numbers.

Governing equations, numerical method, parameters. The flow of an incom-
pressible electrically conducting fluid between two unbounded plates is considered in the
inductionless approximation. The flow is driven by a constant mass flux and subjected
to a constant and uniform magnetic field imposed perpendicularly to the walls. The
nondimensional governing equations and boundary conditions are

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2

v +
Ha2

Re
(−∇φ× e+ (v × e)× e) , (1)

∇ · v = 0, (2)

∇2φ = ∇ · (v × e) , (3)

u = v = w =
∂φ

∂z
= 0 at z = ±1, periodicity in x and y directions, (4)

where e ≡ (0, 0, 1) and x, y, z denotes streamwise, spanwise and wall normal direc-
tions, respectively. The center line velocity U of the laminar Hartmann flow, the half
width of the channel L, and the imposed magnetic field strength B have been taken for
non-dimensionlization. The nondimensional parameters in the equations above are the
Reynolds number Re ≡ UL/ν, and the Hartmann number Ha ≡ BL (σ/ρν)1/2. The local
Reynolds number R is R ≡ Re/Ha.

For the analysis of secondary perturbations, the governing equations (1–3) are lin-
earized about the modulated MHD Hartmann flowU(y, z, t). The secondary linear pertur-
bations take the form up(x, y, z, t) = u(y, z, t) exp(iαx), where α denotes the streamwise
wavenumber. The growth of the perturbations is evaluated by the kinetic perturbation
energy. An energy norm is defined as E(t) = (1/2)

∫
|up|

2dV , thus the ratio of E(t)
and the initial perturbation energy E(0) is the perturbation energy amplification factor,
G(t) = E(t)/E(0).

Using a Lagrangian formalism, the maximum value Gmax(Re,Ha, τ, α) for given pa-
rameters is determined via an optimization with two constraints: (i) the perturbation
energy E(0) = 1; (ii) the perturbation satisfies the linearized governing equations as well
as the boundary conditions in the time interval 0 < t < τ . The Lagrangian multipliers,
so-called adjoint fields, are introduced to enforce these constraints [4]. The optimal per-
turbation and amplification at the final time τ can be obtained by an iterative scheme,
in which forward integration of the linearized governing equation is followed by backward
integration of the adjoint equations. Details can be found in Ref. [6].

Results and discussion. Interaction between top and bottom Hartmann layers is first
considered for primary optimal perturbations. They are calculated by the same iterative



procedure using direct and adjoint equations but with the laminar Hartmann flow profile
as basic flow. Since the laminar flow depends only on z, primary perturbations have
stream- and spanwise periodicity with wavenumbers α and β. Large transient amplifi-
cation factors G(Re,Ha, τ, α, β) of such perturbations occur for α = 0, i.e. streamwise
vortices at initial time t = 0 with β > 0, which evolve into streaks by the lift-up mecha-
nism. The largest amplification GI

max(Re,Ha) occurs for a certain optimal time τ = T I
opt

and wavenumber βopt.
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Figure 1: The streamwise velocity distribu-
tion at t = T I

opt for antisymmetric (left) and
symmetric (right) primary perturbations at
Re = 5000 and Ha = 10.

The vertical perturbation structure can
be assumed to be antisymmetric or sym-
metric in z for the initial wall-normal veloc-
ity component, which results in an symmet-

ric or antisymmetric perturbation (with
respect to streamwise perturbation veloc-
ity). Fig. 1 illustrates such perturbations
for Ha = 10. They appear to have very
similar shape, and show almost identical
valuesGI

max at essentially the same optimal
time T I

opt and wavenumber βopt. For this
reason, the two opposite Hartmann layers
can be considered as isolated at Ha = 10
with respect to primary perturbations.

At lower Ha this is no longer the case.
Fig. 2 shows that antisymmetric and sym-
metric primary optimal perturbations dif-
fer in maximum amplification and corre-
sponding β. Only for Ha > 7, βopt is found
to be proportional to Ha and in good numerical agreement with Ref. [7], where optimal
linear growth for an isolated Hartmann layer is investigated. At small Ha the antisym-
metric perturbations have higher amplification, which is in agreement with non-MHD
channel flow [4]. For an isolated Hartmann layer, the amplification GI

max(Re,Ha) ∼ R2

[7].
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Figure 2: Maximum of primary perturbation energy amplification GI
max (left) and the

corresponding optimal spanwise wavenumber βopt (right) for different Ha at Re = 5000.

For the secondary perturbation analysis, the basic modulated Hartmann flow is gener-
ated from antisymmetric primary perturbations and computed using the DNS code from
Ref. [5]. The secondary optimal perturbations are computed with the method and code
from Ref. [6]. The spanwise direction is periodic with a periodicity length Ly = 2π/βopt.
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Figure 3: Maximum of secondary perturbation energy amplification (left) and correspond-
ing optimal wavenumber αopt (right) at Re = 5000 for streaks of two different amplitudes.

The maximum energy amplification GII
max(Re,Ha, τ) and the corresponding optimal

αopt depend on the amplitude A = E(0)/EB of the streaks, where EB is the energy of the
basic Hartmann flow and E(0) the kinetic energy of the initial primary perturbation, i.e.
the streamwise vortices. As is shown in Fig. 3, for low amplitude A the optimal α is very
close to zero, i.e., the secondary perturbations resemble the primary perturbations and
are amplified by the same lift-up mechanism. Their energy amplification is also close to
the one of the primary perturbation. For the higher amplitude streaks α becomes non-
zero, and the amplification is significantly higher. This can be attributed to inflectional
instability supported by the deformed basic velocity distribution.

When the Hartmann layers are isolated, the secondary perturbations should scale with
δHa, i.e. the amplification should be independent of Ha at fixed R. For this similarity to
hold the deformed velocity profile should have the same shape. The proper choice to seed
the initial perturbation is to keep ARe2/Ha fixed as Ha is changed.

Fig. 4 shows a comparison at R = 300. The amplification changes from Ha = 10
to Ha = 20 but remains about the same at Ha = 30. Secondary perturbations at
opposite walls are therefore still interacting at Ha = 10. The wavenumber α increases
approximately in proportion withHa. Since the time scale also changes, time is multiplied
with Ha/10 in Fig. 4.

The global maximum value of amplification factor GII
max as function of R is shown in

Fig. 5 for several Ha and two sets of streak amplitudes that satisfy ARe2/Ha = const. as
Re and Ha are changed. At the lower amplitude, the relation GII

max ∼ R2 is satisfied to
a good approximation, which indicates that the amplification is largely due to the lift-up
mechanism. For the stronger streaks, the maximum amplification changes exponentially
with R, and only the curves for Ha = 20 and Ha = 30 are in good agreement. The expo-
nential growth with R can be interpreted as the result of inviscid inflectional instability
of the streaky base flow and the increasing life time of the streaks due to slower decay at
higher R. This allows secondary perturbations to grow over times ∼ R.

Further work will be concerned with the detailed structure of secondary perturbations.
It would also be interesting to explore possible links with the changes in transition values
R with Ha noted in the DNS work by Zienicke and Krasnov [8].
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Figure 4: Maximum of secondary perturbation energy amplification (left) and the corre-
sponding optimal wavenumber αopt (right) for higher amplitude streaks at R = 300 and
different Ha. A = 1.39×10−4 for Ha = 10. It varies with Ha according to AHa = const.
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Figure 5: Maximum of secondary perturbation energy amplification GII
max

as function of
R for small amplitude streaks (left) and large amplitude streaks (right). At Ha = 10 the
small amplitude is A = 6.95× 10−5 and the large amplitude is twice as large.
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