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Abstract. We study the linear stability of annular MHD channel flow with a uniform
axial magnetic field in order to determine when two-dimensional instabilities of Orr type
can appear. They are a prerequisite for intermittent turbulent behavior known from plane
MHD channel flow with a spanwise field. The annular flow is driven by Lorentz forces
caused by a radial electric current and the imposed axial field. Stability of this MHD
Dean flow is investigated for axially uniform Orr modes and axisymmetric Dean modes.
Orr mode instability dominates only for small gap width and in strong magnetic fields.

Introduction. The interaction of flows of liquid metals and other conducting liquids
with magnetic fields can be used for flow control or measurement purposes in metallurgy
and other materials processing applications. Typically, the magnetic field has a damping
effect in such MHD flows. The flow structures in wall-bounded MHD flows are also modi-
fied due to electromagnetic boundary layers. Transition to turbulence and the properties
of turbulent MHD flows can therefore differ significantly from non-MHD flows. Such
questions have been explored by computational studies in recent years since experiments
are difficult and typically provide only very limited information on such flows.

The selective damping of gradients in the flow along the direction of the magnetic
field can also favor flow instabilities that are otherwise superseded by other processes. An
example is the so-called large-scale intermittency (LSI) in plane MHD channel flow with
a homogeneous spanwise field found in a number of computational studies [1, 2]. In this
problem, the viscous instability of Orr modes (also called Tollmien-Schlichting modes) is
unaffected by the magnetic damping but the growth of non-modal perturbations normally
causing bypass transition is suppressed. One therefore finds a cyclic evolution between the
unstable laminar state and turbulent flow that is quickly suppressed by Joule dissipation.
Experimental verification of this phenomenon is missing so far and may be difficult to
achieve due to the additional friction at Hartmann walls that are not taken into account in
channel flow simulations of LSI. Another problem is the generation of a sufficiently strong
and homogeneous field over a sufficient length of a straight channel. Experimentally it is
preferable to use an annular channel that can be placed in the bore of a solenoid magnet,
which generates an axial field. The flow can then be driven by an azimuthal Lorentz
force that results from applying a radial current between the cylindrical walls of the
annular channel [3]. The problem in this setup is the presence of centrifugal instabilities
that may supersede the Orr mode instability. In the present paper we therefore consider
the magnetic damping of such centrifugal instabilities. The goal is to identify parameters
where Orr mode instability prevails so that the LSI could be observed at least in principle.



14

k=0.9999
= = =k=0.5
1.2

H

; ! LTS

1 7 ~

H s A

i 0.8 ’ h

: g§ . S

1 £ ~

: 2 ‘ N

’

: > osf , A\

1
H ] H 4 \
: H : 4 \
i i i 04 ¢ . 1
: i : ’ \
i i i ’ B
H H : Y/ q
\i—/ 02 V, ’

]

1

0

T N f :

Figure 1: Sketch of the geometry (left) and basic flow structure (right)

Previous studies have focused on the narrow gap approximation [4]. We consider the
problem without making this assumption. End walls have to be neglected in order to
obtain one-dimensional stability problems that can be solved with modest computational
expense.

Governing equations and parameters. We consider the flow of an incompressible
electrically conducting fluid with conductivity o, density p and kinematic viscosity v in
the gap between two concentric cylinders. A potential difference is imposed between
the cylinders, which are assumed to be perfectly conducting. The driving Lorentz force
results from the interaction between the imposed uniform axial magnetic field By = Bye,
and the radial electric current. The base flow has only an azimuthal velocity component,
which depends on the radial coordinate. End walls in the axial direction are not taken
into account. Fig. 1 shows the basic geometry schematically.

The governing equations for velocity w and electric potential ¢ in the quasistatic
approximation are the Navier-Stokes equations together with Ohm’s law for the current
density 7 and charge conservation, i.e.

B 1 1
_u+(u.v)u:_—Vp+1/V2u+—j X By, 1
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In the following we use cylindrical coordinates r, # and z and corresponding vector com-
ponents. Boundary conditions are zero velocity and fixed electric potentials ¢; and ¢, at
the inner and outer walls located at »r = R; and » = R,. For the presentation of results
we introduce the ratio

k= R;/R, (5)

to characterize the influence of curvature with x = 1 corresponding to plane channel flow.



The Reynolds number B
Re =Ud/v (6)

is defined with the average azimuthal velocity U and the gap width d = R, — R; Finally,
the Hartmann number is defined by

Ha = dBy\/o/pv. (7)

The basic velocity distribution of this so-called Dean flow has only the azimuthal compo-
nent uy = V' that depends on r and k. It is given by

Vin) = UC(x) {nlogn g loerr, n—l}} , ®)

1 — k2

where n = r/R, and C' is determined by the imposed volume flux. Fig. 1 shows that
V(n) is asymmetric and that it approaches the parabolic profile for k — 1.

The linear stability analysis using normal modes requires linearization of eq. (1-4)
about V'(n). Normal modes are periodic in both ¢ and z, i.e. they are exponentials

exp(iwt) exp(im#) exp(iaz) 9)

in 6, z and time ¢t with complex frequency w, an integer azimuthal wave number m and a
real axial wavenumber a.

We are not interested in general perturbations with both m and « non-zero. For the
non-magnetic case the flow typically becomes first unstable to axisymmetric perturbations
(m = 0) called Dean modes. Intermittency in plane MHD channel flow requires a linear
instability to Orr modes unaffected by the magnetic field, i.e. with a = 0. We want to
find conditions where similar behavior may be obtained in direct numerical simulations
(DNS) of the Dean flow, i.e. parameter combinations of x, Re, and Ha where the basic
flow is only unstable with respect to the Orr mode. We therefore determine the neutral
stability limits of Orr modes with @ = 0 and Dean modes with m = 0.

Two-dimensional Orr modes (o = 0) have radial and azimuthal components that can
be represented by a stream function ¢ = f(r) exp(im# + iwt). Dean modes have all three
velocity components. FEach of them takes the form ¢(r)exp(iaz + iwt). In either case,
we use an expansion in Chebyshev polynomials for discretization in the radial coordinate.
A linear algebraic eigenvalue problem for w is then obtained by means of a Chebyshev
collocation method and solved in MATLAB using the QZ algorithm. Neutral conditions
are then determined by varying either Re or Ha until w; = 0 is achieved.

An alternative approach is possible by DNS, which have also been used for stability
studies in the same geometry [5].

Results and discussion. We first consider the Orr modes, which depend on s and
Re. In plane channel (Poiseuille) flow Orr modes become unstable at Re$ ~ 5772 with
a nondimensional wavenumber a$ = 1.02 based on d/2, i.e. a dimensional wavelength of
dm/a% [6]. These values should be recovered in the limit £ — 1. We have therefore started
our computations near k = 1. In contrast to plane channel flow the wavenumber m has
to be integer. This leads to significant changes when x becomes small since the values of
m are then fairly low. The results are shown in Fig. 2. We see that Re. increases as & is
reduced until it reaches a maximum near x = 0.55. The subsequent decrease is due to a
switch from m = 3 to m = 2. Below k &~ 0.45 the m = 2 branch does not exist. Fig. 2 also
shows Re. and the wavenumber m for plane Poiseuille flow for comparison with the Dean
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Figure 2: Stability limits of Orr modes (left) and corresponding azimuthal wavenumbers
m (right) as function of the radius ratio . In plane channel flow the Reynolds number is
based on the maximum velocity and the channel half-width, hence the prefactor 3/4.
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Figure 3: Critical Reynolds number of Dean mode for k = 0.9 (left) and corresponding
axial wavenumber (right).

flow. The wavenumber m for Poiseuille flow has been computed as m = 2alx/(1 — k),
i.e. as the ratio of the the circumference of the inner cylinder to the critical wavelength
dr/a%. We see that this provides a fairly good estimation of m except for low k < 0.6.
The discontinuous changes in m for the Dean flow should normally proceed in increments
Am = 1. The larger jumps in Fig. 2 are due to the finite number of x values explored in
our computations.

For Dean modes the non-magnetic stability limit Re. has been computed in the narrow-
gap approximation. It is given by [4]

Re. ~ 35.94\/k/(1 — k), a,. = 3.96, (10)

where the nondimensional wavenumber «. is based on the length d. We have first verified
these results for x close to unity. Finite values of Ha lead to a monotonous increase in
Re, due to the magnetic damping. It becomes linear in Ha when Ha is sufficiently large,
i.e. the slope dRe./dHa is constant. The corresponding axial wave numbers a, decrease
as 1/Ha. Both effects are illustrated in Fig. 3. In contrast to Re., a, hardly change with
k. However, at fixed Ha Re,. increases strongly with x.

Based on our results, we have determined regions in the Re-Ha plane where Dean
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Figure 4: Stability limits in the Re-Ha-plane for Orr modes and Dean modes for x = 0.9
(left) and ~ = 0.95 (right).

modes are sufficiently suppressed by the magnetic damping so that the Orr modes become
unstable first. Fig. 4 shows two different values of x. Orr modes are unstable for Re > Re?
irrespective of Ha. The Dean modes are unstable for Re > Re”(Ha), i.e. below the
corresponding limiting curve in the Re-Ha-plane. The region of Orr mode instability lies
therefore in the upper triangular section of the plane. The minimum values of Ha are
substantial and increase strongly when « is reduced.

Conclusions. The Dean mode instability can only be suppressed in favor of Orr modes
when the gap width is small and the Hartmann number is substantial. For this reason,
experiments in a parameter range where LSI could potentially exist would require a sub-
stantial diameter of the annular channel as well as fairly strong fields. Investigation of
the effects due to end walls requires DNS at large values of x and high aspect ratios of
axial size to gap width.
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