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Abstract: The present study is concerned with the stability of a flow of viscous conducting
liquid driven by pressure gradient in the channel between two parallel walls subject to a trans-
verse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow,
similarly to its hydrodynamic counterpart – plane Poiseuille flow, is known to become turbulent
significantly below the threshold predicted by linear stability theory. We investigate the effect
of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially
subcritical Reynolds numbers starting from Ren = 2939 without the magnetic field and from
Ren ∼ 6.50× 103Ha in a sufficiently strong magnetic field defined by the Hartmann number
Ha. Although the latter value is by a factor of seven lower than the linear stability threshold
Rel ∼ 4.83× 104Ha, it is still more by an order of magnitude higher than the experimentally
observed value for the onset of turbulence in this flow.

1 Introduction
The flow of viscous incompressible liquid driven by a constant pressure gradient in the channel
between two parallel walls, which is generally known as plane Poiseuille or simply channel
flow, is one of the simplest and most extensively studied models of hydrodynamic instabilities
and transition to turbulence in shear flows. The development of turbulence in the magnetohydro-
dynamic (MHD) counterpart of this flow, which is known as Hartmann flow and arises when a
conducting liquid flows in the presence of a transverse magnetic field, is currently not so well
understood. The MHD channel flow, which was first described theoretically by Hartmann [1] is
still an active subject of research [2, 3].

The present study is concerned with finding such 2D travelling-wave states in Hartmann
flow. Starting from plane Poiseuille flow, we trace such subcritical equilibrium states by gradu-
ally increasing the magnetic field. Using an accurate numerical method based on Chebyshev
collocation approximation and a sufficiently large number of harmonics we find such states ex-
tend to subcritical Reynolds number Rn ≈ 6500 which is almost by a factor of two smaller than
that predicted by the mean-field approximation [5].

2 Formulation of problem
Consider the flow of an incompressible viscous electrically conducting liquid with density ρ ,
kinematic viscosity ν and electrical conductivity σ driven by a constant gradient of pressure
p in the channel of the width 2h between two parallel walls in the presence of a transverse
homogeneous magnetic field B⃗. The velocity distribution of the flow v⃗(⃗r, t) is governed by
the Navier-Stokes equation ∂t⃗v+ (⃗v · ∇⃗)⃗v = −ρ−1∇⃗p+ ν∇⃗2⃗v+ρ−1 f⃗ , where f⃗ = j⃗× B⃗ is the
electromagnetic body force containing the induced electric current j⃗, which is governed by
Ohm’s law for a moving medium j⃗ = σ(E⃗+ v⃗× B⃗), where E⃗ is the electric field in the stationary
frame of reference. The flow is assumed to be sufficiently slow that the induced magnetic field
is negligible relative to the imposed one. This supposes a small magnetic Reynolds number



Rem = µ0σv0h ≪ 1, where µ0 is the permeability of vacuum and v0 is the characteristic velocity
of the flow. In addition, we assume that the characteristic time of velocity variation is much
longer than the magnetic diffusion time τm = µ0σh2. This allows us to use the quasi-stationary
approximation leading to E⃗ = −∇⃗ϕ , where ϕ is the electrostatic potential. The velocity and
current satisfy mass and charge conservation ∇⃗ · v⃗ = ∇⃗ · j⃗ = 0. Applying the latter to the Ohm’s
law yields ∇⃗2ϕ = B⃗ · ω⃗, where ω⃗ = ∇⃗× v⃗ is vorticity. At the channel walls S, the normal (n) and
tangential (τ) velocity components satisfy the impermeability and no-slip boundary conditions
vn|s = 0 and vτ |s = 0. Electrical conductivity of the walls is irrelevant for the type of flow
considered in this study.

We employ right-handed Cartesian coordinates with the origin set at the mid-height of the
channel, the x- and the z-axes directed, respectively, against the applied pressure gradient ∇⃗p0 =
P⃗ex and along the magnetic field B⃗= B⃗ez so that the channel walls are located at z=±h, and the
velocity is defined as v⃗ = (u,v,w). Subsequently, all variables are non-dimensionalised by using
h, h2/ν and Bhν as the length, time and electric potential scales, respectively. The velocity
is scaled by the viscous diffusion speed ν/h, which we employ as the characteristic velocity
instead of the commonly used centreline velocity.

The problem admits a rectilinear base flow v⃗0(z)= ū0(z)⃗ex =Reū(z)⃗ex for which the Navier-
Stokes equation reduces to ū′′−Ha2ū = P̄, where Re = Uh/ν is the Reynolds number based
on the centreline velocity U, Ha = dB

√
σ/ρν is the Hartmann number, and P̄ is a dimension-

less pressure gradient satisfying the normalization condition ū(0) = 1. This equation defines
the well-known Hartmann flow profile ū(z) = cosh(Ha)−cosh(zHa)

cosh(Ha)−1 with P̄ = −Ha2 cosh(Ha)
cosh(Ha)−1 , which

relates the centreline velocity with the applied pressure gradient P = P̄Uνρ/h2. In the weak
magnetic field (Ha ≪ 1), the Hartman flow reduces to the classic plane Poiseuille flow ū(z) =
1− z2.

3 Theoretical background

3.1 Linear stability of the base flow
The two-dimensional travelling waves considered this study are expected to emerge in the result
of linear instability of the Hartmann flow with respect to infinitesimal perturbations v⃗1(⃗x, t).
Owing to the invariance of the base flow in both t and x⃗ = (x,y), perturbations are sought
as Fourier modes v⃗1(⃗r, t) = ⃗̂v(z)eλ t+i⃗k·⃗x + c.c. defined by complex amplitude distribution ⃗̂v(z),
temporal growth rate λ and the wave vector k⃗ = (α,β ). The incompressibility constraint, which
takes the form D⃗k ·⃗̂v = 0, where D⃗k ≡ e⃗z

d
dz + i⃗k is a spectral counterpart of the nabla operator, is

satisfied by expressing the component of the velocity perturbation in the direction of the wave
vector as ûq = e⃗q ·⃗̂v = ik−1ŵ′, where e⃗q = k⃗/k and k = |⃗k|. Taking the curl of the linearised
Navier-Stokes equation to eliminate the pressure gradient and then projecting it onto e⃗z × e⃗q,
after some transformations we obtain a modified Orr-Sommerfeld type equation which includes
a magnetic term

λ D⃗2
kŵ =

[
D⃗4

k −Ha2(⃗ez · D⃗k)
2 + ikRe(ū′′− ūD⃗2

k)
]

ŵ. (1)

The no-slip and impermeability boundary conditions require ŵ = ŵ′ = 0 at z = ±1. The
equation above is written in a non-standard form corresponding to our choice of the charac-
teristic velocity. Note that the Reynolds number appears in this equation as a factor at the
convective term rather than its reciprocal at the viscous term as in the standard form. As a
result, the growth rate λ differs by a factor Re from its standard definition.



Since the equation above as its non-magnetic counterpart admits Squire’s transformation,
in the following we consider only two-dimensional perturbations (k = α), which are the most
unstable. The problem is solved numerically using the Chebyshev collocation method which is
described in detail in Ref. [4].

3.2 Nonlinear 2D travelling waves
Two-dimensional travelling waves emerge as follows. First, the neutrally stable mode with a
purely real frequency ω =−iλ interacting with itself through the quadratically nonlinear term
in the Navier-Stokes equation produces a steady streamwise invariant perturbation of the mean
flow as well as a second harmonic ∼ e2i(ωt+αx). Further nonlinear interactions produce higher
harmonics, which similarly to the fundamental and second harmonic travel with the same phase
speed c = −ω/α. Thus, the solution can be sought in the form⃗v(⃗r, t) = ∑∞

n=−∞ E n⃗v̂n(z),where
E = ei(ωt+αx) contains ω, which needs to determined together ⃗̂vn by solving a non-linear ei-
genvalue problem. The reality of solution requires ⃗̂v−n = ⃗̂v∗n, where the asterisk stands for the
complex conjugate. The incompressibility constraint applied to the nth velocity harmonic res-
ults in D⃗αn ·⃗̂vn = 0, where D⃗αn ≡ e⃗z

d
dz + i⃗exαn with αn = αn stands for the spectral counterpart

of the nabla operator. This constraint can be satisfied by expressing the streamwise velocity
component ûn = e⃗x ·⃗̂vn = iα−1

n ŵ′
n in terms of the transverse component ŵn = e⃗z ·⃗̂vn, which we

employ instead of the commonly used stream function. Henceforth, the prime is used as a
shorthand for d/dz. Note that the previous expression is not applicable to the zeroth harmonic,
for which it yields ŵ0 ≡ 0. Thus, û0 needs to be considered separately in this velocity-based
formulation.

Taking the curl of the Navier-Stokes equation to eliminate the pressure gradient and then
projecting it onto e⃗y, we obtain

[D⃗2
αn
− iωn]ζ̂n −Ha2û′n = ĥn, (2)

where

ζ̂n = e⃗y · D⃗αn ×⃗̂vn =

{
iα−1

n D⃗2
αn

ŵn, n ̸= 0;
û′0, n = 0.

(3)

and ĥn = ∑
m

⃗̂vn−m · D⃗αm ζ̂m are the y-components of the nth harmonic of the vorticity ζ⃗ = ∇⃗× v⃗

and that of the curl of the nonlinear term h⃗ = ∇⃗× (⃗v · ∇⃗)⃗v. Henceforth, the omitted summation
limits are assumed to be infinite. Separating the terms involving û0, the previous expression for
h can be rewritten as ĥn = iα−1

n (ĥw
n + ĥu

n), where

ĥw
n = n ∑

m ̸=0
m−1(ŵn−mD⃗2

αm
ŵ′

m − ŵ′
mD⃗2

αn−m
ŵn−m), (4)

ĥu
n = iαn[û0 − û′′0D⃗2

αn
]ŵn ≡ Nn(û0)ŵn. (5)

Eventually, using the expressions above, (2) can be written as Ln(iω, û0)ŵn = ĥw
n with the

operator
Ln(iω , û0) = [D⃗2

αn
− iωn]D⃗2

αn
−Ha2(⃗ez · D⃗αn)

2 −Nn(û0). (6)

This equation governs all harmonics except the zeroth one, for which, in accordance with the
incompressibility constraint it implies ŵ0 ≡ 0. Zeroth velocity harmonic, which has only the
streamwise component û0, is governed directly the x-component of the Navier-Stokes equation:
û′′0 −Ha2û0 = P̂0 + ĝ0,where P̂0 = P̄Re is a dimensionless mean pressure gradient and ĝ0 =



i∑m ̸=0 α−1
m ŵ∗

mŵ′′
m is the x-component of the zeroth harmonic of the nonlinear term g⃗ = (⃗v · ∇⃗)⃗v.

Velocity harmonics are subject to the usual no-slip and impermeability boundary conditions
ŵn = ŵ′

n = û0 = 0 at z =±1.

4 Results
Weakly nonlinear analysis shows that the instability of the Hartmann flow is invariably subcrit-
ical regardless of the magnetic field strength [3]. In the present study, we determine how far
the subcritical equilibrium states, which bifurcate from the Hartmann flow, extend below the
linear stability threshold. Let us first validate our method described in Sec. 3.2 by computing
critical Reynolds number for 2D travelling waves in plane Poiseuille flow, which corresponds to
Ha= 0. To characterize the deviation of the velocity distribution from the base state, besides the
transverse velocity amplitude A, we use also the amplitude associated with the energy of per-
turbation scaled by the energy of the basic flow A2

E =
´ 1

0

⟨
|⃗v(x,z)− v⃗0(z)|2

⟩
dz/
´ 1

0 |⃗v0(z)|2dz,
where the angular brackets denote for the streamwise average.

We start with a relatively low Hartmann number Ha= 1 for which the flow becomes linearly
unstable at Rel = 10016.3 with αl = 0.971827 [3]. The energy amplitude of equilibrium states
versus the wavenumber is plotted in figure 1 for various subcritical values of Re. As for the
non-magnetic plane Poiseuille flow, equilibrium states form closed contours, which shrink as
Re is reduced, and collapse to a point at the critical Ren = 3961.36 below which 2D travelling
waves vanish. It means that subcritical perturbations have both a lower and an upper equilibrium
amplitude. Both these amplitudes are plotted in figure 1 together with the respective value of
ŵ′′

1(1), which is the quantity predicted by the weakly nonlinear analysis [3]. As seen, the the
lower branch of ŵ′′

1(1) is predicted well by weakly nonlinear solution for subcritical Reynolds
numbers down to Re ≈ 7000.

A similar structure of subcritical equilibrium states is found also for Ha = 5 and Ren =
438302. At this large Re it becomes difficult to compute accurately the upper equilibrium states
which require the numerical resolution of at least 48×32. The strongly subcritical states, which
in this case extend down to Ren ≈ 32860, can reliably be computed with a substantially lower
resolution of 48× 10. In the following, we focus on such strongly subcritical Reynolds num-
bers at which 2D travelling waves emerge. The respective Reynolds number defines what is
subsequently referred to as the 2D nonlinear stability threshold.

The critical Reynolds number and wavenumber for 2D nonlinear stability threshold are
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Figure 1: The energy amplitude of equilibrium states versus the wavenumber α for Ha = 1 and
various Re computed with the resolution M×N = 32×8.
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Figure 2: Critical Reynolds number (a), wavenumber (b) and phase speed (c) for even and odd
modes of linear and nonlinear instabilities against the Hartmann number.

shown in figure 2 together with critical parameters for linear stability versus the Hartmann
number [3]. At small Hartmann numbers, instability is associated with the even mode for
which 2D travelling waves appear at Ren = 2939. As the Hartmann number exceeds Ha ≈ 2.8,
which is about half of the respective value for the linear instability, an odd equilibrium mode
appears with a large Reynolds number and a small wavenumber. This long-wave odd mode
exists only within a limited range of Hartmann numbers up to Ha ≈ 20. At Ha ≈ 10 another
odd mode appears with a slightly higher Reynolds number but much shorter wavelength. At
Ha ≈ 15 Reynolds number of the latter mode becomes smaller than that for the long-wave
mode. The characteristics of this short-wave odd mode are seen closely approaching those of
the original even mode. In a sufficiently strong magnetic field, the critical Reynolds number
and wavenumber for both nonlinear modes increase with the Hartmann number similarly to the
respective threshold parameters of the linear instability [3]. Namely, for Ha ≳ 20 the best fit
yields Ren ∼ 6.50×103Ha,αn ∼ 0.223Ha,cn ∼ 0.293. It is important to notice that the critical
Reynolds number above is almost by an order of magnitude lower than that for the linear in-
stability Rel ∼ 48300Ha. In the mean-field approximation using only one harmonic, we find
Ren ∼ 12300Ha, which is almost by a factor of two higher than the accurate result above and
coincides with the result reported by [5].
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