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Abstract: A liquid metal (GaInSn) spherical Couette flow is being carried out at the Helmholtz-
Zentrum in Dresden-Rossendorf to explore a region of Reynolds-Hartmann space in which
numerical simulations [1, 2] show hydrodynamically unstable and magnetohydrodynamically
unstable regions separated by an isthmus of stability. The region is of further interest because
these (inductionless) instabilities have similar signatures to the instabilities found in a larger
scale, less thoroughly diagnosed experiment, that were reported as the (induction dependent)
Magnetorotational instabiliity (MRI) [3].

1. Introduction

Two spheres, one inside the other, in differential rotation with a layer of fluid between will
generate a broad array of possible dynamics in the enclosed fluid, depending on the aspect
ratio, the rotation rates of the spheres, and the viscosity of the fluid. If the fluid is electrically
conducting and permeated by a magnetic field, applied and/or self-excited, the array of possible
dynamics broadens further. The configuration, known as magnetized spherical Couette flow,
was first studied numerically by Hollerbach [4] as an extension of the nonmagnetic spherical
Couette problem [5, 6]. Since then the flow has been investigated, numerically [1, 7–9] and
experimentally [3, 10], under a variety of imposed fields and magnetic boundary conditions. A
compendium of magnetized spherical Couette results can be found in [11].

A long, albeit contentiously, discussed result of magnetized spherical Couette flow was
the observation of an angular momentum transporting, magnetically induced instability in a
turbulent (Reynolds number (Re) ≈ 107, where Re = r21Ω/ν, with r1 inner radius, Ω inner
sphere rotation rate, and ν bulk viscosity of the fluid) liquid metal flow, which was described
in [3] as the long sought-after Magnetorotational Instability (MRI). In contrast to the MRI as
usually described [12], this instability was non-axisymmetric and demonstrated an equatorial
symmetry whose parity depended on the strength of the applied magnetic field. Subsequent nu-
merical investigations [1, 7] turned up a collection of induction-free instabilities—related to the
hydrodynamic jet instability, the Kelvin-Helmholtz-like Shercliff instability, and a return flow
instability—that replicated the parity properties, as well as the torque on the outer sphere (the
proxy measurement of angular momentum transport). A more modestly scaled (Re < 105 ), but
more comprehensively diagnosed (Ultrasonic Doppler Velocimetry (UDV), electric potential
measurements), spherical Couette experiment is being carried out at the Helmholtz-Zentrum
Dresden-Rossendorf in order to better characterize these instabilities, their criteria, and their
saturation. Presented here are initial data from the experiment, as well as some phenomenology
of the saturation and bifurcation of the instabilities via nonlinear transfer of energy between
azimuthal modes as revealed by the numerical simulations.



2. Simulation

Preliminary simulation of the experiment was carried out using a code, described in [13], that
solves for a flow, driven by the rotating inner sphere, according to the incompressible Navier-
Stokes Equation:

∇ ·U = 0, ∇×U = ω, ∂ω/∂t = ∇× F +∇2ω. (1)

The body force F is given by

F = Re (∇×U)×U + Ha2 (∇×B)×B, (2)

with U and B vector fields of the velocity and magnetic fields respectively, and Ha the Hartmann
number (B0r1

√
σ/ρν, B0 applied field strength, σ electrical conductivity, ρ mass density).

The magnetic field is split into an applied (B0) and an induced (b) component, where the
applied field is curl free within the flow domain. The Lorentz force is then given by

(∇×B)×B = (∇× b)×B0 + (∇× b)× b, (3)

where b is given by the magnetic induction equation in the (so-called inductionless) limit where
diffusion (∇2b) exactly balances advection (∇× (U×B0)):

0 = ∇2b +∇× (U×B0) . (4)

The ((∇× b)× b) term in Eqn. 3 is taken to be small. In all of the simulations performed in
preparation for this experiment, the applied field was taken to be axial.

The simulations are run according to the following proceedure. First a flow including only
the axisymmetric modes is evolved to a steady state solution for given values of (Re, Ha).
The linear stability of the m 6= 0 harmonics are then tested through a linearized Navier-Stokes
calculation. The unstable flows are then seeded with three-dimensional, nonaxisymmetric noise
and evolved until the instability saturates. Figure 1a shows the stability boundaries for a flow
with aspect ration 0.5. Figure 1b-d show energy densities of the instabilities associated flow of
Re 1000 and Ha 10, 30 and 70 respectively, with streamlines of the axisymmetric meridional
flow overlaid. Figure 1e-f shows the same with isocontours of the angular momentum. The
values of Re and Ha are chosen because the actual instability takes on a different character in
each. At low Ha, the instability arises in the jet (1b). At medium Ha, it arises in the stagnation
point of the meridional flow (1c). At high Ha, it arises along the Shercliff Layer (1g).

The steady states of the full three-dimensional calculation have the practical use of guiding
diagnostic design and expectations for the low Re cases (discussed further in Section 3. below).
They also demonstrate a saturation mechanism for the instabilities [14].

3. Apparatus

The physical experiment consists of one of two possible inner spheres (r1 = 3 cm or 4.5cm)
held in the center of an outer sphere (r2 = 9 cm). The outer sphere is a Polymethyl Methacetate
(PMMA) acrylic with cylindrical holders for ultrasonic doppler velocimetry (UDV), and perfo-
rations to admit copper electrodes for potential measurement. Figure 2a shows a SolidworksR©

model of the experiment including the diagnostics, Figure 2b shows the actual manufactured
vessel. The space between the spheres is filled with a GaInSn eutectic alloy. Because of the
high density of the medium (roughly 6 times that of water), each inner sphere holds a lead
weight to counter the buoyancy force. The axial magnetic field is provided by a pair of copper
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Figure 1: a) Critical Reynolds numbers as a function of Hartmann number for symmetric and
antisymmetric instabilities calculated from a linearized Navier-Stokes equation analysis of the
axisymmetric base flows. The boundaries of the region which can be reasonably simulated, and
the region which can be reached in the experiment are indicated by the shaded bands. The (Ha,
Re) values of the flows Figures b-g are indicated by circles. b-g). Profiles of the energy density
of the most unstable eigenmode from at three different Hartmann numbers at Re 1100. b-d
show streamlines of the meridional flow over the energy density of the m=2 harmonic. e-g show
contours of the angular momentum over the same. b and e show the equatorially antisymmetric
jet instability (Re 1100, Ha 10). c and f show the equatorially symmetric return flow instability
(Re 1100, Ha 30). d and g show the equatorially symmetric Shercliff layer instability (Re 1100,
Ha 70).

electromagnets (not pictured) with central radii of 30 cm, with a vertical gap of 31 cm between
them (a near Helmholtz configuration). The inner and outer spheres are driven with a minimum
rotation frequency of ∼0.02 hz by a pair of 90 W electromotors connected to 100 x 1 gears.
The electromagnets provide 1 mT of axial magnetic field (or 1.17 Ha) per 4.2 Amps through
the coils.

The simulations of Section 2. provide estimates of the potential differences between elec-
trodes and the velocities measured along the UDV chords. Table 1 shows a summary of these
predictions, as well as engineering data, for the lowest Re runs of interest. At such low rotation
rates, the peak velocity signals are on the order of a half mm/s for all three classes of instabil-
ity, which can be reasonably measured using standard UDV probes. The potential differences
are drastically different between the instabilities—the potential is a product of the background
magnetic field and the flow—but even the lowest voltages are measurable when appropriately
preamplified. The initial run campaigns of the experiment will seek to confirm the most inter-
esting features of Fig. 1: the stability isthmus in the vicinity of Ha 20, the Reynolds line around
Ha 30 where an increase in Re stabilizes the flow (in contradiction to typical intuition), and the
transition between the three types on instability.

4. Summary

As of the writing of this proceedings paper, the vessel, the test stand and the electromagnetic
coils have all been manufactured. It remains to affix the diagnostics to the sphere and to attach
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Figure 2: (A) SolidworksR© model the spherical Couette experiment. Some UDV and potential
probes are indicated in the figure. The elbowed tube is for the gallium fill. (B) real spherical
vessel. Pits hold the real diagnostics.

the power and cooling supplies to the electromagnets.

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft under grant STE 991/1-2.

5. References

[1] Hollerbach, R. (2009). Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R.
Soc. London A, 465:2003–2013.

[2] Travnikov, V.; Eckert, K.; and Odenbach, S.: (2011). Influence of an axial magnetic field on the
stability of spherical Couette flows with different gap widths. Acta Mech, 219:255–268.

[3] Sisan, D. R.; Mujica, N.; Tillotson, W. A.; Huang, Y.-M.; Dorland, W.; Hassam, A. B.; Antonsen,
T. M.; and Lathrop, D. P.: (2004). Experimental Observation and Characterization of the Magnetoro-
tational Instability. Phys. Rev. Lett., 93(11):114502.

[4] Hollerbach, R. (1994). Magnetohydrodynamic Ekman and Stewartson Layers in a Rotating Spherical
Shell. R. Soc. London Proc. Ser. A, 444:333–346.

Reynolds Hartmann Ωin B0 φmax φ̃max vmax ṽmax
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