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Abstract: This work is concerned with the axial magnetic field effect on the onset of the helicoidal 
wave (spiral mode) in a rotating conical system flow defined by two truncated concentric conical 
cylinders, the inner cone is rotating and the external one is fixed. Two configurations are considered, 
down flow system and up flow system (figure.1.a and .1.b). Therefore, we introduce a new coordinates 
system to analyze the perturbed velocity field in each configurations. Firstly, we determine the mean 
velocity distribution corresponding to the steady laminar regime. Secondly, assuming the linear 
theory, we establish the equations system of stability with the associated boundary conditions. By 
means of the Galerkin method, we get the dispersion relation leading to determine the variation of 
Taylor number versus wavenumber. Then we interpret the stability diagram according to the onset of 
spiral mode in hydromagnetic stability in both cases (up and down conical flow system) compared 
with those obtained in the classical Taylor-Couette flow system (cylindrical case). 
 
Introduction 
 
The hydrodynamics of rotating systems aims to study the mechanisms and properties prediction 
related to natural phenomena. Mainly in meteorology for understanding atmospheric phenomena and 
its application to weather prediction. In astrophysics, to investigate the atmospheric dynamics of the 
planets and to analyze the rotating stars heart as sun which is subjected to both hydrodynamic and 
hydromagnetic effects which is studied by Chandrasekhar problem [1]. 

As well as in industrial processes including liquid metal, this flow system is also of great 
importance, not only in the design of rotating machinery such as multiple concentric drives, turbine 
rotor, but also for the application to chemical equipment such as compact rotating heat exchangers and 
mixers. However, in this flow system the hydrodynamic equations associated to the electromagnetism 
equations presents a specific behavior that is difficult to predict theoretically and numerically. 

To our best knowledge there has been no attempt on the theoretical and experimental approach to 
the effect of magnetic field on the nature and structure of the laminar-turbulent transition regime in 
conical Taylor-Couette flow system. However, in the cylindrical configuration it is well know that the 
magnetic field stabilized the stationary axial wave (Taylor vortex) by delaying it onset at the critical 
Taylor number Ta = Tc . 1

In this context, we propose an analytical approach to predict the helicoidal instability or spiral 
mode in conical Taylor-Couette flow system. We investigated the magnetohydrodynamic stability 
which is considered for the evaluation of the influence of an axial magnetic field, it is supposed to 
stabilize and delaying the onset of spiral mode as predicted by S.Chandrasekhar in the case of Taylor-
Couette flow system. 
 
1. Problem formulation 
 
We consider a flow between two coaxial cones so as to the inner cone (r = R1max) is rotating with 
angular velocity Ω1 and the outer cone (r = R2max) is maintained at rest (Ω2= 0). The cones have the 
same apex angle φ = 12°. 
1.1. Coordinates system. The coordinate system used in the study of the flow confined between two 
coaxial cylinders or two spheres does not apply here because the cone radius varies with the height 
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which is related to the fluid confinement (Fig.1). Furthermore, the boundary conditions associated 
with the cone system is not constant along the generatrix. For this purpose the chosen orthogonal 
curvilinear coordinates system consists of three axes z, x and θ such as z is supported by the generatrix 
of the inner cone. Thus, x is the coordinate axis perpendicular to the surface (S) and θ is the third 
coordinate perpendicular to z and x  which corresponds to the azimuthal coordinate [3, 4]. Therefore, 
the new coordinates are  
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Figure 1: a: Up flow system configuration, b: down flow system configuration. 
 

1.2. Governing equations. In order to predict the onset of the spiral mode of a fluid flow characterized 
by a density ρ, a kinematic viscosity ν, a magnetic permeability μ and an electrical conductivity σ, we 
consider the Navier Stokes and Maxwell equations as follows  
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 In view to simplify the system of equations (1-4) we suppose the following assumptions as the 

physical properties (ρ, ν, μ and σ) of the fluid are constants, the problem is axisymmetric , 
the magnetic field is steady in the axial direction 
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Boundary conditions: The boundary conditions associated to the problem are given as  
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1. 3 Flow control parameters. For simplicity, the governing equations are writing in dimensionless 
form using the following reduced variables and functions given by:

  * * * 0 * 0 * 0 *
x x z z

rt t, x d, z d, r sin cos , V V / V , V V / V , V V / V andp p /( V ²)dd² θ θ θ θ θ θ

υ
= η= ζ = = = ζ φ+η φ = = = = ρ 0

The flow is characterised by several control parameters, the annular gap δ = d/R1max = 0.12, the 
Reynolds number 1maxRe R d= Ω ν

 
which is the ratio between the viscose force and inertial forces, the 

Taylor number 1/ 2
1maxTa (R d )= Ω ν δ  the magnetic Reynolds number  It shows the 0

mR 4 dVθ= πμσ
relationship between the terms of convection and diffusion in a magnetic fluid and the Hartmann 

number 0
m 0Ha R B / V 1/ 2θ= πρμ  which is the ratio of the Lorentz force and viscous forces. 

 
 

 



 
2. Solving problem. 
 
2.1. Mean hydromagnetic field. By expending the equations system (5-8), we notice that the previous 
system is independent of the imposed magnetic field. For this, we note that the axial magnetic field 
doesn’t affect the mean velocity component in both configurations up and dawn. The same result is 
obtained by Chandrasekhar in the classical Taylor-Couette flow [1].  
22. Perturbed hydrodynamic field. In order to solving the previous equations system (1-4), by means 
of the Galerkin method which led to establish an eigenvalues problem. For that, we propose the 
solutions that showing the axial periodicity depending on the ζ component and satisfying the spiral 
wave nature given by 
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With injecting those solutions in the previous system and we used the operator D defined by 
D d / d= η

 
in order to simplify the partial differential equations where we must eliminate the pressure 

term in order to obtaining the stability equations versus the magnetic field component * *
xb and b θ  .      
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2.3. Implementation of the Galerkin method. One must choose a basic approximation of the solution 
as follows 

- Radial component:            * *
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The magnetic field must satisfy the boundary conditions of problem. This will then imposes  
* * * 0xn n xnb b Dbθ= = =  0 1at andη η= =  

By injecting expressions in equation (I) and (II), we establish the evaluation of the error associated 
with two velocity components as Follows 
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It is now optimized values to minimize errors in each of the previous system of equations. To do this, 
it is necessary to make a point based on the property which follows from the properties related to the 
integral inner product, namely:  
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 A necessary condition for the existence of a solution (nontrivial solution) is to impose that the 
determinant of the Cramer previous system is zero. This condition leads us to solve the associated 
eigenvalue problem. In other words, it is set according to λ*, σ, α, ω, Ha and Rm on physical point of 
view this corresponds to a dispersion relation. 

Is performed solving the eigenvalue problem by performing a first order approximation by setting n 
= m = 1. Under these conditions, the Galerkin matrix G of order 2 has the form: 
To the solution is not trivial is imposed: det G = 0 is:  a11d11-c11b11= 0  
3. Results and discussion 
 
3.1. Theoretical results. By imposing a null determinant associated with the eigenvalues problem, it is 
established a relationship which leads to the following solutions. The Taylor number evolution 
according to the wave number λ* and the magnetic Reynolds number Rm = 10-3 follows a parabolic 
behavior law characterized by a maximum in the set (Ta=24.5, λ* = 0.01) in the cas of up conical 
system but in the down configuration Taylor number increases and reaches a maximum value (35000-
100000) . The magnetic Reynolds number Rm = 10-3 corresponding to the industrial applications such 
as the MHD generator-gaz and the diffuse discharge. 
By varying the Hartmann number Ha and keeping the magnetic Reynolds number constant, we notice 
that the critical Taylor number decreases when the magnetic Reynolds number increases about 10 %. 
The previous curves indicate us that the variation of the Hartmann number produces any visible 
change on this type of flow in the both cases of Rm = 10-3 and Rm = 10-2. 
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Figure 2: Taylor number evolution versus the wave number λ*. 

From Rm = 10, we observe a change of the previous behavior laws which is characterized by a 
maximum for (Ta=35, λ* = 0.4 and Ta=3.06, λ* = 0.4) the Hartman number has an important effect in 
this case for the Down configuration. 
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Figure3: Taylor number evolution versus the wave number λ* in the case of Rm = 10. 

In the case of the controlled thermonuclear reactions (Rm=100), the variation of the Taylor number 
versus the wave number evolves according to two different laws. In the range 0 < λ*<2, the law is 
parabolic characterized by a maximum at λ*m = 0.99, Ta = Tm =14.9. For 2 < λ* <4 the behavior law 
crosses an inflection point of coordinate λ*

c = 2.7, Ta = Tc1 = 38.1 whose position is invariant in the 

 



interval 0.5 ≤ Ha ≤ 30, followed by a maximum λ*
M = 3.18, Ta = TM = 50.4 for the Hartmann number 

Ha = 0.5 and Ha = 10. 
In the case Ha = 5, it is observed a significant change of the behavior law except in 0 < λ*< 2. 

Beyond λ*= 2, the behavior law, the inflection point position and the maximum point remain 
invariables for any Hartmann number. 

The analysis of these results led us to note that the magnetic field advances the onset of the spiral 
mode (helicoidal wave). 

For higher Reynolds magnetic number Rm = 103 it is noticed that the Taylor number evolution 
according to the wave number λ* changes its behavior in the range 2 < λ* <4. 

By varying the Hartmann number between Ha = 0.5 and 30, it is noted that the critical Taylor 
number conversely increases with the wavelength λ*

c. 
 

  

TaTaTa   TaRm=100Rm=100 
 Ha=0.5 

 
 Ha=0.5 Rm=100 

 Ha=10

Ta Rm=1000 
 Ha=10 

λ* λ*λ*λ*λ*

Figure 4: Evolution of Taylor number versus the wave number λ* in the case of Rm=102, Rm=103 in 
the Up conical flow system. 

 
Conclusion 
 
Following a new coordinates system it was possible to solve the equations of motion in the 
approximation of the small annular gap configuration in the rotating conical flow system. It was found 
that the imposed magnetic field does not affect the mean hydrodynamic field. Therefore, there is a 
change in the behavior laws by varying the magnetic Reynolds number and is placed in different areas 
such as gas-generator-MHD, controlled thermonuclear reactions, plasmas and astrophysics. The study 
of the stability problem of the effective magnetic field shows the existence of a delay in the onset of 
spiral mode which becomes more important when the Hartman number increases. Conversely, the 
spiral mode wavenumber decreases when the Hartman number increases this is consistent with the 
result of Chandrasekhar established in classical Taylor-Couette flow system.  
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