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Abstract: In a Taylor-Couette experiment on the non-axisymmetric version of the mag-
netorotational instability, performed by Seilmayer et al. [1], a dominantly azimuthal
magnetic field was created by a central vertical copper rod connected to the power source
by two horizontal rods at a height of approximately 0.8 m below and above the cylindrical
volume. The liquid metal flow in the cylindrical gap between the cylinders was simulated
using the OpenFoam library including a Poisson equation for the determination of the
induced electric potential. The slight deviation from a purely axisymmetric azimuthal
imposed magnetic field turns out to have a surprisingly strong effect on both the critical
Hartmann number and the flow structure of the instability.

1. Introduction

Rotating flows with a radially increasing angular momentum are hydrodynamically stable
but can be destabilized by magnetic fields via the magnetorotational instability (MRI)
[2, 3]. If the magnetic field is purely azimuthal, we obtain a non-axisymmetric version
of MRI [4, 5], called the azimuthal magnetorotational instability (AMRI), which plays a
central role in the concept of the MRI dynamo in accretion disks [6].

In a recent liquid metal experiment [1], AMRI was shown to set in approximately at the
predicted value of the magnetic field strength. Yet, there were some significant differences
between the observed and numerically predicted rms values of the velocity. In this paper,
these discrepancies are explained by the strong sensitivity of the AMRI with respect to
slight deviations of the applied magnetic field from axisymmetry. For this purpose, we
simulate the experiment using the OpenFoam library including a Poisson equation for the
determination of the induced electric potential.

2. Problem formulation

Figure 1 shows a sketch of the considered problem which comprises the main features of
the magnetized Taylor-Couette experiment as reported by Seilmayer et al. [1]. A strong
axial electric current Ia flows in a vertical copper rod creating in the melt a dominantly
azimuthal magnetic field.

Due to the contributions of the connections to the power supply, the applied magnetic
field is not anymore purely azimuthal and axisymmetric, but has also radial and axial
components (see Fig 2). In the case of an axisymmetric azimuthal magnetic field we
would have B = B eϕ with a maximal value at the inner cylinder Bmax = B(Ri) =
µ0Ia/(2πRi) ≈ 80 mT (for Ia = 16 kA). Whereas the axial component Bz is three orders
of magnitude smaller than the azimuthal component Bϕ, the Br component can not be
neglected and should be taken into account.



Figure 1: Sketch of the geometry of the experiment.
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2.1. Governing equations

The interaction between the induced electric current density j and the magnetic field B
yields the induced electromagnetic force density j×B (Lorentz-force) in the melt. Using
the radius of the inner cylinder Ri as the length scale, the azimuthal velocity of the inner
cylinder ΩiRi as the velocity scale, defining Bi = B(Ri), taking into account Ohm’s law
j = σ(−∇Φ + u × B) and the electric charge conservation ∇ · j = 0, we obtain the
dimensionless equation for the momentum conservation

u̇ + (u · ∇)u = −∇p+
1

Re
∆u +

Ha2

Re
(−∇Φ + u×B)×B . (1)

Here we use the definitions Re = ΩiR
2
i /ν and Ha =

√
σ

ρ ν
BiRi for the Reynolds and

Hartmann numbers, respectively. The electric potential Φ can be determined by the
Poisson equation:

∆Φ = ∇ · (u×B) . (2)

We solve equations (1) and (2) simultaneously in the low induction approximation,
i.e. the magnetic induction B is considered to be independent of the flow velocity and
is computed only once using the Biot-Savart law. For more details about the numerical
method see [7].

We use no-slip boundary conditions for the velocity at the rigid walls, and slip boundary
conditions at the narrow open slits between the outer and inner end-caps. At the external
wall, i.e. the outer copper cylinder, we chose for the electric potential Φ = 0, and for the
rest of the boundaries we apply insulating boundary conditions (jn = 0).
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Figure 2: Magnetic field components Bϕ (a) in the ”xz”-plane parallel to the current loop,
and Br (b) and Bz (c) in the ”yz” plane.
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3. Results

Figure 3 shows the numerically obtained drift frequency of the AMRI mode with m = 1
for the particular case Re = 1480 and µ = Ωo/Ωi = 0.26, in comparison with the 1-d
linear stability analysis for an infinitely long cylinder [5] and with the experimental results
from [1].

 0.14

 0.18

 0.22

 0.26

 0.3

 0.34

 40  60  80  100  120  140  160

 

Numerics
Linear stability analysis

Experiment

Figure 3: Drift frequency of the azimuthal mode m = 1 for Re = 1480 and µ = Ωo/Ωi =
0.26.
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Figure 4 shows the computed velocity profiles uz(r = 0.07 m, z) of the azimuthal mode
m = 1 as a function of time for different values of the rotation ratio µ = Ωo/Ωi in
the hypothetical case of a purely axisymmetric azimuthal magnetic field. Evidently, the
AMRI disappears with increasing µ.
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Figure 4: Velocity profiles uz(r = 0.07 m, z) of the azimuthal mode m = 1 over time for
different values of the rotation ratio µ = Ωo/Ωi for the case of an axisymmetric
imposed azimuthal magnetic field.

Figure 5 shows the isosurface of the axial velocity component uz for the case of axisym-
metric (left) and non-axisymmetric applied magnetic field (right). For axisymmetry, the
resulting pattern represents a spiral, rotating slightly slower than the outer cylinder. This
spiral is concentrated approximately in the middle of the upper and lower halves of the
cylinder, where we observe a preference for either the upward moving or the downward
moving spiral. Since such a symmetry breaking would not appear in an infinite length
system, it must be attributed to the (minor) flow modifications due to the end walls. The
corresponding simulation for the case that the deviation of the applied magnetic field from
axisymmetry is correctly taken into account is shown on the r.h.s. of Figure 5. The effect
is remarkable: the formerly clearly separated spiral structures now also fill the middle
part of the cylinder and penetrate into the other halves. It is interesting to note that a
similar picture of interpenetrating spirals had been observed in simulations of a corotating
spiral Poiseuille flow [8].

4. Conclusions

We have shown that a careful 3-d simulation is needed to understand the experimental
results of a recent experiment on AMRI. The observed, and numerically confirmed, strong
sensitivity of AMRI with respect to a slight symmetry breaking deserves further attention.
Present work is devoted to the question whether the AMRI shifts also to higher values of
the rotation ratio of outer to inner cylinder when the symmetry breaking of the applied
field is taken into account. It would be of significant astrophysical importance if slight
modifications of an azimuthal field would allow the inductionless AMRI to apply also to
rotation profiles as shallow as the Keplerian one.



Figure 5: Isosurface of the axial velocity component uz for the cases axisymmetric (left)
and non-axisymmetric (right) applied magnetic field (Ha = 124) showing dif-
ferent flow structures.
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