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Abstract: A soft instability of helical flows of various structures arising under the impact of 
helically traveling magnetic field of the form )cos(0 θω θρ ktBB −=  is examined. We 
consider inductionless approximation using the "external" friction model in the helical 
coordinate system ζθρ ,, . Neutral stability curves are calculated in logarithmic Hartmann-
Reynolds plane for the pitch angle of helical channel 05 .α =  
 
1. Introduction 
The structure of flows arising in helical channels of induction pumps under the action of a 
rotating magnetic field (RMF) depends both on such characteristics of helical channels as 
curvature and torsion and on MHD flow parameters. A joint impact of these characteristics 
determines the channels drag and, to a certain extent, the efficiency of the pump operation.  
 
2. Mathematical model 
We examine soft instability of laminar and turbulent flows with respect to the appearance of 
stationary or non-stationary spatially periodic secondary structures or waves in the induction-
free approximation and using the "external" friction model. 
 

 
Figure1: Schematic diagram for estimations (a):1- RMF inductor; 2 - helical channel; 3 - 

ferromagnetic core; (b) – relations between helical and cylindrical coordinates. 
 

MHD processes in helical channels are described by the following dimensionless 
vector equations: 
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structural parameter ε  are determined using P-Q characteristic of the helical induction pump 
ACH-3 [2], 0 0 1/ ( )R Rζδ ζ= − . In case of the laminar flow 0.λ =  

The system (1) - (3) components in HCS have the following form: 
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3. Problem solution 
The velocity of a unidirectional laminar or mean turbulent flow in a helical channel arising 
under the action of the force 0f  is determined from the solution of the following equation: 

      '' ' 2 4 2 41
0 0 0 0 0 0

0 0

( 0.5)2 cos ( ) cos ( )att
att

k rV V V Ha V Ha kλ α ϕ ρ α ϕ
ρ ρ

ρ+
+ − − ⋅ = − ⋅   (6) 

with boundary conditions 
0 1 0 1

0 0 1
0.

r r
V V

ρ ρ= = +
= =   

Following the Galerkin method, we obtain:    0
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where Hk is determined from the solution of k equations k kl lH O P= , 
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kα  are the roots of the equation 1 1 1 1sin ( 1) sin ( 1) 0.k k k kr sh r r sh rα α α α+ − + =     
We specify small velocity and pressure disturbances in the form of waves travelling 

along the θ  and ζ axes, whose amplitude depends on the coordinate ,ρ  i.e. 
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where .R i Iσ σ σ= +          
Substituting (8) into (4), (5) and neglecting the squares of minor disturbances, we 

obtain the following system of equations connecting velocity and pressure disturbances: 
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Expressing w through u and v using (12), determining q and Dq using (11) and 
excluding q from (9), (10), we obtain:  
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where  are linear differential operators: 1 2, ,A A Δ

    2 3 2 2 2 2 2
1 0 0 0 0 06 (6 ) 2( /H HA D D h g D h gρ ρ ρ ρ= + + − − − + ρ

2 0 0 02 ( / ),HA D D h g

  

2 2 2ρ ρ ρ= + − +     
2

2
1 2

0 0

4 4 .hD D
ρ ρ

−
Δ = + +   



Further, the problem of the stability of laminar or mean turbulent flow profile is 
considered within the sub-region 0 1ρ≤ ≤  of the range of values 0ρ . In this case,   boundary 
conditions for the system (13), (14) are 
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We seek the solution to Eqs. (13)-(14) by the Galerkin method in the form 
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where , kC kB  are complex coefficients of the expansions (17), (18),  
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Substituting the series (17), (18) into Eqs. (13), (14) and accomplishing the procedure 

of Galerkin's method, we obtain a system of 2l homogeneous algebraic equations binding the 
coefficients  and kC kB . Using the solvability condition for this system, singling out the real 
and imaginary parts of the obtained expression, using, to the first approximation, the stability 
change principle 0σ =  and assuming that 0, 1,h k lθ = = =  we obtain an equation connecting 
critical values of MHD parameters Ha, Reω  and aζ : 
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where the integrals  are given in the Appendix.  klIn
 

 
 

Figure 2: Estimations of neutral stability parameters for MHD flows: 1 – in helical channel, 2 
– in cylindrical cavity [4]. 

 
Our estimations by (20) show (fig.2) that helical MHD flows under study possess of 

higher stability level relatively to disturbances of Taylor vortices type in comparison with 
rotational MHD flows in cylindrical cavities under RMF effect [4]. 
 
 



4. Conclusion 
 
A complete solution of the instability problem of MHD flows in helical channels using the 
"external" friction model was derived. Neutral stability conditions were analyzed in the first 
approximation at 0,   1.k lσ = = =  Obtained estimations were compared with known ones for 
rotating MHD flows in cylindrical channels under the impact of RMF.  
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Appendix 
 
The following are the integrals used in the problem (k, l integral indices are not shown for 
simplicity): 
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