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Abstract: We investigate experimentally the properties of low-Rm MHD turbulence, which takes 
place in a wall bounded domain. First, we look at forced turbulence and show that it is possible to 
observe turbulent velocity fluctuations featuring 2D behaviour (in the sense that they do not depend 
on a spatial coordinate), even though a strongly 3D mean flow exists. Second, we analyse the free 
decay of the turbulence, during which we can distinguish several distinctive regimes.

Introduction 

One of the main features of MHD flows is the action of the Lorentz force, which tends to damp 
momentum along the magnetic field. This process can be interpreted as a diffusion of momentum 
along the magnetic field [1], eventually bringing the flow towards a two-dimensional state. Until 
now, most studies - whether experimental ([2], [3]), theoretical [4], or numerical [5] - have focused 
on cases  where  turbulence  evolves  in  a  space  featuring  either  a  free  surface,  infinitely  distant 
boundaries,  or periodic boundary conditions.  However,  the presence of obstacles is  an intrinsic 
feature of real flows, and any attempt to fully explain their dynamics must account for them. The 
purpose of this study is to understand the effects of walls on the dynamics of electrically-driven 
low-Rm MHD turbulence. This paper breaks down into three parts: we will start by presenting our 
experimental setup, before analyzing the statistical properties of the fully developed turbulent flow, 
and finally looking at the dynamics of its free decay. 

1. Experimental methods

Our  work  was  conducted  using  the  Flowcube,  an  experimental  rig  designed  to  generate  and 
investigate electrically driven turbulence in a closed cubic domain [6]. It consists of a frame of 
inner length  L = 100 mm closed by electrically insulating side plates. Instruments are embedded 
flush within each one of these plates in order to either drive the flow (current injection electrodes) 
or analyze its properties (potential probes and ultrasound transducers). The cube is placed inside the 
450 mm bore of a superconducting magnet, which applies a vertical  magnetic field B0  ez  of up to 
4T. The cube is filled with Gallinstan, an eutectic alloy of gallium, indium and tin, which is liquid at 
room  temperature,  and  characterized  by  a  density  ρ =  6400  kg/m3,  a  kinematic  viscosity 
ν = 4 x 10-7 m²/s and an electrical conductivity σ = 3.4 x 106  S/m. Electrical current is injected by 
means of a 10 x 10 square array of electrodes, alternately connected to the positive and negative 
poles of a DC power supply.  The injection electrodes are located on the bottom plate,  and are 
uniformly separated by a distance li  = 10 mm from each other.  100 uniformly spaced potential 
probes mesh a 30 mm x 30 mm square area located on the bottom plate with a spatial resolution 
Δx = 2.5 mm.  These probes give access to the electric potential field at the plate's surface, from 
which can be deduced the velocity field perpendicular to the magnetic field in the plane right above 
the bottom Hartmann layer [7]. Finally, a vertical row of ultrasound transducers give horizontal 
velocity profiles at different heights along the magnetic field. The spatial domain explored by the 
transducers spans from x = 10 mm to x = 90 mm (the immediate vicinity of the side walls must be 
ignored as the signals are corrupted by strong echoes), with a spatial resolution Δx = 0.22 mm. 



Figure  1: Sketch  of  the  Flowcube.  Electrical  
current  is  injected  through  the  injection  
electrodes at the bottom. The data acquired in  
sections 2 and 3 come from the probes colored  
in  dark  gray (left  ultrasound transducers  and  
bottom  potential  probes  respectively).  Probes  
colored  in  light  gray  are  present  in  the  
experiment but not exploited in this paper. 

The operating conditions used for the experiments 
are  characterized  by  a  Hartmann  number 
Ha ~ 7300 and a Reynolds number based on the 
turbulent fluctuations Re ~ 30000. A total electrical 

current I = 300 Amps was injected. These parameters were selected for two reasons: first, they yield 
a  strongly  three-dimensional  forced  flow,  where  inertia  and  the  Lorentz  force  are  in  strong 
competition. Second, they lead to a reasonably long decay (around 15 seconds), which is easy to 
capture. The forcing was even and carefully monitored during the measurements. During a typical 
experimental run, the forced state was recorded for 3 minutes after the transient regime vanished 
(almost instantly). The decay was then triggered by suddenly switching off the power supply. The 
recording was kept running during 30 seconds after the decay had been triggered.

2. Forced Turbulence

In this section, we analyze the statistical properties of forced turbulence. The data presented below 
result  from averaging 35000 velocity  profiles  (50  experimental  runs,  during  which  700 forced 
profiles were recorded). 

Figure 2 shows the normalized mean flow and turbulent fluctuations horizontal profiles, at different 
locations away from the forcing. Figure 2.a's bottom signal features a quasi periodic profile, whose 
half wavelength is  li = 10 mm. This length corresponds to the spacing between injection electrodes 
and  can  be  interpreted  as  the  characteristic  length  of  the  forcing.  The  peaks  and  troughs  are 
therefore evidence of counter rotating structures generated by the forcing. As we move up in the 
box,  one  can  see  that  the  amplitude  of  the  mean  flow,  relative  to  the  bottom flow decreases 
dramatically with height. In fact, there appears to be a factor 10 between the bottom flow where the 
forcing takes place and the top flow. This behavior can be put on account of the Lorrentz force not 
being strong enough to compete with inertia throughout the box, therefore leading to strong three-
dimensionality [8]. Figure 2.b, shows that the intensity of the fluctuations at the bottom features 
strong spatial variations. Those variations are quickly damped along z, giving a rather even and 
uniform fluctuation distribution far from the forcing area. Contrary to the mean flow, the amplitude 
of the fluctuations is not damped with height, and seems to be affected by side walls only. 

Figure 3 gives a synthesized view of the previous argument. In particular, figure 3.a shows how 
quickly the mean flow is damped along z, resulting in a very weak residual flow for z > 50 mm. In 
the same spirit, 3.b shows how the intensity of fluctuations is smoothed out and become constant for 
z > 50 mm. In other words, horizontal turbulent fluctuations seem to feature a 2D behavior (in the 
sense that they do not depend on the spatial coordinate z), although the mean flow is strongly three-
dimensional. It is also worth noting that the fluctuations are much more intense than the mean flow 
at any given height. Indeed, they happen to be twice as important at the bottom, but become more 
than twenty times larger at the top. 



         (a)  Mean Flow                                                (b) Turbulent Fluctuations

Figure 2: horizontal mean flow (left) and turbulent fluctuations (right) perpendicular to the  
magnetic field. Both graphs are normalized by the rms (resp. mean) of the bottom signal.  
Notice the damping of smaller structures by the Lorentz force along z.

               (a)  Mean Flow                                                  (b) Turbulent Fluctuations

Figure 3: Statistical properties against height. Mean flow (left), turbulent fluctuations (right).

Figure 4 gives an alternate representation in Fourier space of the signals displayed earlier.  The 
spectral  examination  of  the  velocity  signals  indicates  how  energy  is  distributed  amongst  the 
different  scales  along  x.  The  bottom  spectrum  shows  a  peak  (marked  by  the  dotted  line) 
corresponding to the scale lp = 19 mm, which happens to be twice the spacing between electrodes, or 
in other words the size of a pair of counter rotating vortices. The energy therefore seems to be 
concentrated  in  this  elementary  pattern:  the  pair  of  counter-rotating  vortices  act  as  the  energy 
injection scale in the experiment. Furthermore, the peak visible at the bottom (i.e. close to where the 
forcing takes place) does not appear elsewhere,  meaning that the energy has been redistributed 



amongst scales with height. It is also worth noting the various breaks in slopes that occur in these 
spectra, even though the underlying physical mechanisms remain to be determined. Nonetheless, 
the steep slopes at the right end of the spectra indicate that smaller scales receive very little energy. 

Figure 4: Power spectral density at three  
different heights. The x-axis is normalized  
by the length explored by the ultrasound  
transducers. In this case, lref = 90 mm. The  
spacing  between  injection  electrodes  is  
marked  by  the  dashed  lines,  the  energy  
containing  scale is marked by the dotted  
line.

3. Decaying turbulence

Next, we turn our attention to freely decaying 
turbulence. The results shown in this section 
come  from  averaging  over  50  different 
decays.

Figure 5.a displays the decay of the kinetic 
energy  per  unit  volume  contained  in  the 
bottom square E(t), which is defined by :

E(t )=∑
i

ui(t)
2

2
.

In the previous formula, ui(t) refers to the 
ith  velocity  value  deduced  from  the  bottom 
electric potential measurements at the given 
time  t.  The  signal  is  normalized  by  E(0), 
which  refers  to  the  same  quantity,  but 
evaluated  during  the  forced  state  (i.e.  right 
before  the  decay  was  triggered).  Time  is 
normalized by the Joule time  τJ  =  ρ / σB0

2  . 
Figure 5.b shows the time decay of particular Fourier coefficients contained within the investigation 
area. In other words, we look at the decay of the energy for a given set of structures. Note however 
that since we are restricted to a 30 mm x 30 mm square sampled at 2.5 mm, we actually have access 
to a very limited range of scales contained within 5 mm < l < 15 mm. These scales happen to be  
very close to the injection scale, which limits the extent of our study. Nonetheless, one can clearly  
identify three distinct regimes on both graphs: region (a) for 0 < t/τJ  < 1500, region (b) for 1500 < 
t/τJ  < 5000 and region (c) for t/τJ  < 5000.  As the decay goes on, the slopes of figure 5.a become 
steeper, meaning that energy gets damped more quickly. Looking at figure 5.b, region (a) is a region 
where energy dissipation very clearly depends on the scale. More specifically, the bigger structures 
seem to loose their  energy faster  than the smaller  ones.  In  region (b),  one can observe a  very 
distinctive regime change, where the decay rate becomes scale independent. This regime exhibits a 
steady t-1.5 decay law in agreement with figure 5.a. Region (c) can be referred to as the final stage of 
the decay. In this region the decay appears to become scale specific again, however unlike in the 
early decay, the structures whose energy is dissipated faster are now the smaller ones.



        (a) Energy per unit volume decay                                        (b) Scale decay                                

Figure 5: Decay of the kinetic energy per unit volume inside the middle square of the bottom  
plate.  The time axis  is  normalized by the  Joule time  τJ  = 0.47 ms,  which  is  the shortest  
phenomenon occurring in the experiment. Time decay of Fourier coefficients, normalized by  
their respective value before the decay is triggered. The scales considered here are contained  
within the 30 mm x 30 mm central square. The time axis is normalized by the Joule time.  
k ~ 1/l is the wave number associated to the structure of size l.

4. Conclusion

We have presented different aspects of wall-bounded low-Rm MHD turbulence under Ha ~ 7300 
and Re ~ 30000. In these conditions, we observed a forced mean flow presenting very strong three-
dimensionality, characterized by a weak residual flow featuring large structures at the top of the 
box, despite strong forcing took place at small scales at the bottom.  This behavior can be explained 
by the Lorentz force diffusing vorticity along the magnetic field, damping velocity gradients - thus 
smaller structures - along the magnetic field. This phenomenon translates into spectral space by 
various slopes whose physical meaning is still to be tackled. In addition, we obtained unprecedented 
results  regarding the  decay of  wall-bounded MHD turbulence.  Even though they are  still  very 
qualitative,  we were able  to  clearly  identify  different  phases  where  radically  different  physical 
phenomena are likely to occur. 

The work presented here is still very much in progress, and many issues need to be addressed before 
we can give a definitive answer to what is happening during the decay. First, more decays must be 
measured until the results have fully converged. Second, it is necessary to analyze a broader range 
of structures, as those we were limited to are too close to each other. Last, we need to explore other 
operating settings, especially higher magnetic fields. 
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