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Abstract

The report focuses on the linear analysis of a plane-parallel flow stability in transverse
magnetic field (Hartmann flow) with the convective approximation. Obtained and solved
equations that describes the perturbation growth. Founded perturbation modes and
non-excitation conditions of ones. Obtained the equation for the instability increment
and shown to have an instable root of the equation. Also shown that founded instabilities
is qualitatively agrees with the experimental data.

Introduction

Hartmann flow is steady stream between two fixed infinite parallel planes arising for due
to the pressure drop that occurs in a magnetic field directed perperpendicular planes. We
choose the z axis co-directional with the external magnetic field B0, and the x axis direct
along the stream. For such flow there is an exact solution:

Vx(z) =
k2δ

k1 sinh(k1δ)
(cosh(k1δ)− cosh(k2z)), (1)

√
νm
4πρν

Bx = −k2
k1

z +
k2δ

k1 sinh(k1δ)
sinh(k1z), (2)

where k1 = B0/
√
4πρννm, k2 = −(1/ρν)(∂p/∂x). Constants ν and νm are kinematic and

magnetic viscosity, ρ is density of the fluid.
From (1), (2) we can show that with increasing transverse magnetic fields velocity profile

becomes flatter. This flatness is characterized by the Hartmann number: Ha = B0/
√
4πρννm.

Stability of the Hartmann flow was first considered in [1] where the influence of the
magnetic field is taken into account only by changing the velocity field, and obtained (quite
expected) result that with increasing magnetic field stability increases too.

Also worth noting the work of [2], which has been studied experimentally the transition to
turbulence due to the instability Hartmann layer and conditions of turbulence suppression.
Found that when the parameter R = Re/Ha > 380 the flow becomes turbulent. Numerical
simulations [3] gives approximately the same result. Because R is inversely proportional to
the magnetic field, then again, it can be concluded that a weak magnetic field destabilizes
the current.

Two-dimensional perturbations

Assume that instabilities are convective, ie perturbations that arise at any point does not
have time to develop, and are carried over beyond the real pipe. But because the magnetic

1



field has (because embeddedness) inhibitory effect, then feasibility of such an assumption, it
should be small.

We can leave this value from the dimensional parameters of the liquid in three ways:
νm/δ, ν/δ and

√
ννm/δ. Since on embeddedness affects only magnetic viscosity, it is logical

to choose the first variant. Thus we obtain:

B0δ√
4πρνm

≪ 1. (3)

In this approximation, we consider that the perturbation does not evolve, moving along
the main flow, ie ∂/∂x = 0. Then investigate the stability of the system of equations:

∂V

∂t
+ (V,∇)V +

1

ρ
(P +

B2

8π
)− 1

4πρ
(B,∇)B− ν∇2V = 0, (4)

∂B

∂t
− (B,∇)V + (V,∇)B− νm∇2V = 0, (5)

∇ ·V = 0, (6)

∇ ·B = 0, (7)

assuming that the main flow is obeys (1), (2), and all the convective instability.
Making the transformation B → B+b, V → V+v, P → P +φ, where V = (V (z), 0, 0),

B = (B(z), 0, B0) - known. We leave only linear members of perturbations. Further, since
on the time t and the coordinate y movement is infinite, then assume that on these variables
perturbation is periodic : f(y, z, t) → f(z)exp(iγt − iky). Ie in each layer dz extends plane
wave. Denoting then bx = b and vx = v write:

b = (b,
∂a

∂z
,−∂a

∂y
) = (b,

∂a

∂z
, ika), (8)

v = (v,
∂q

∂z
,−∂q

∂y
) = (v,

∂q

∂z
, ikq), (9)

where a and q - x components of the vector potential.
Through this transformation of equation (6) and (7) disappears, and y and z components

of the equation (5) are identical. Then the system equations describing the amplitude of a
plane wave perturbation has the form:

iγv + ikV ′q − B0

4πρ

db

dz
− ik

B′

4πρ
a+ νk2v − ν

d2b

dz2
= 0, (10)

iγb− ikV ′a−B0
dv

dz
+ ikB′q + νmk

2b− νm
d2b

dz2
= 0, (11)

dM

dz
− ikN =

B0

4πρ
∇2a, (12)

dN

dz
+ ikM = 0, (13)
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where stood the two quantities:

M = iγq + νk2q − ν
d2q

dz2
, (14)

N =
φ

ρ
+

Bb

4πρ
. (15)

For N values the boundary conditions are obviously zero: N(±δ) = 0. However, you need
another condition to determine the possible wave numbers k. Note that if in the expression
for M make replacement z → −z (or k → −k) it does not change. So we can say that
M(δ) = M(−δ).

Then from (14), (15) and substituted the boundary conditions we obtain the eigenvalues
of the wave number:

k = −i
π

δ
n, n ∈ Z. (16)

Ie for k = 0, there is instability, being increased either the right or left relative to the flow.
Nonzero modes will not be excited, if δ is sufficiently large. We can compare δ with the
parameters of liquid three ways, but since this instability is due to hydrodynamic and elec-
trodynamic forces then choose the variant for δ, where ν and νm includes equally. Therefore,
considering convection assumptions we have range for δ:

√
4πρννm
B0

≪ δ ≪
√
4πρνm
B0

, (17)

which implies that ν ≪ νm or magnetic Prandtl number Prm ≪ 1. And as Ha ≫ 1.

One-dimensional perturbations

It should be noted that for k ̸= 0 system obtained can be solved exactly, but we restrict our
investigation is one-dimensional flow in the y-stable region. Then the vector perturbations
are two-dimensional (no z component). We obtain two independent systems for the potentials
(18), (19) and for the components of the perturbation (20), (21):

iγa−B0
dq

dz
− νm

d2a

dz2
= 0, (18)

iγq − B0

4πρ

da

dz
− ν

d2q

dz2
= 0, (19)

iγb−B0
dv

dz
− νm

d2b

dz2
= 0, (20)

iγv − B0

4πρ

db

dz
− ν

d2v

dz2
= 0, (21)

the pressure disturbance Is expressed through disturbance of the magnetic field as follows:

φ = −Bb

4π
. (22)
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Boundary conditions are as follows:

b(±δ) = v(±δ) =
da

dz
(±δ) =

dq

dz
(±δ) = 0. (23)

Note that when ν = νm in both systems is the symmetry: when replacing b → v
√
4πρ

(or a → q
√
4πρ) form of the equations is not changed. Therefore, the spectrum obtained is a

degenerate, so that the eigenfunctions can be found in the form b = σv
√
4πρ, where σ = ±1.

We have eigenvalues corresponding to stable flow:

iγ = − ν

(2δ)2
(π2n2 +Ha2) ≤ 0, n ∈ Z. (24)

This means that for close values of kinematic and magnetic viscosity low and one-dimensional
perturbations are damped and the flow is stable. However, as follows from (17), there already
been undamped perturbation mode.

System (18), (19) and (20), (21) in the solution will give the same eigenvalues λ and lead
to the same equation for the eigenvalues of the increment γ. We solve (20), (21). We seek a
solution in the form b = b0e

λz, v = v0e
λz. Obtain the eigenvalues:

λ2 =
1

2

iγ (1

ν
+

1

νm

)
+

B0
2

4πρννm
±

√[
iγ

(
1

ν
+

1

νm

)
+

B0
2

4πρννm

]2
− 4γ2

ννm

 . (25)

In view of the boundary conditions we obtain the equation for increment γ:

b1v2 cosh(λ1δ) sinh(λ2δ) = v1b2 sinh(λ1δ) cosh(λ2δ), (26)

where: b1 = B0λ1δ, b2 = B0λ2δ, v1 = δ(iγ − νmλ1
2), v2 = δ(iγ − νmλ2

2) (λ1 taken with plus
before the square root).

Dimensionless γδ2/ν → γ. In the first approximation we set Prm = 0. Then we obtain
the following for the eigenvalues: λ1δ ≃

√
iγ +Ha2, λ2 ≃ 0. Equation (26) can be factored

and written in the form:
iγ

√
iγ +Ha2 = tanh

√
iγ +Ha2. (27)

Roots of equation (27) must satisfy equation (26) in the approximation Prm = 0.
One of the roots (stable) is immediately visible: iγ = −Ha2 < 0. Another root corre-

sponding a pure imaginary increment indicates flow instability: iγ > 0.

Discussion and conclusions

On Fig. 1 shows a summary of the experimental results on the study of the stability of the
Hartmann flow [4]. In these experiments, the measured resistance coefficient: λ = −2p′δ/ρV 2.
For Hartmann flow it has the form: λH ≃ 2Ha/Re. At the graph the deviation of bisector
from the coordinate angle means that flow for the given parameters already turbulent.

From (3) follow that in the convective approximation λ ≪ Ha−1Rem
−1. Since the exper-

iments were carried out at Ha ∼ 102 and Rem ∼ 10−3 (mercury) it is possible to say that
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Figure 1: Experimental data on the resistance coefficient in comparison with the theory for
the flow of Hartmann. Highlighted the range of applicability of the convective approximation.

λH ≪ 10. And as can be seen from Fig. 1 in this field flow is not laminar. Thus found
instability really take place.

Fulfillment of the condition (17) provides only the absence of perturbations aimed parallel
to the planes (ie absence component of the perturbation).As seen from (27) with increasing
Ha instability is suppressed. This can be explained by the fact that with increasing magnetic
field (and as a consequence an increase in the Hartmann number) embeddedness effect will
dominate, making it difficult to form instabilities in the initially laminar flow instabilities.But
the equation (27) obtained in the limit Prm → 0. To determine more precise conditions under
which the flow could be sustained needs detailed analysis of (26).

It should also be noted that in the limit Ha → 0 instability is still present, although it
itself becomes for Poiseuille. Absence of such a limit transition observed in [5], and explained
that a non-zero magnetic field already generates instability, which then can develop without
using a magnetic field.

References

1. R. Lock. The Stability of the Flow of an Electrically Conducting Fluid between Parallel
Planes under a Transverse Magnetic Field. Proc. R. Soc. Lond. A. 233 (1955) 105 - 125.

2. P. Moresco, T. Alboussière. Experimental study of the instability of the Hartmann layer.
J. Fluid Mech. 504 (2004) 167 - 181.

3. D.S. Krasnov, E. Zienicke, O. Zikanov, T. Boeck, A. Thess. Numerical study of the
instability of the Hartmann layer. J. Fluid Mech. 504 (2004) 183 - 211.

4. H. Branover, A. Chinober. Magnetohydrodynamics of incompressible fluids. The main
editorial physical and mathematical literature publishing house ”Science”. Moscow, 1970. pp 88–
96 (in Russian).

5. E. Velikhov. Stability of an ideally conducting fluid between rotating cylinders in a magnetic
field. Soviet Physics JETP. 36 (1959) 1398 - 1404.

5


