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Abstract : An inherent dynamo process exists in magnetohydrodynamic turbulence and is 
statistical in nature. Turbulent planetary and stellar magnetofluids exhibit large-scale 
magnetic fields and this statistical process may be involved in the origin of these fields.  
 
1. Introduction 
Turbulent magnetohydrodynamic (MHD) flows are expected to exist inside astrophysical [1] 
and geophysical [2] objects, and have also been seen in laboratory dynamo experiments [3]. 
In these physical systems, coherent large-scale magnetic fields are observed and appear to 
arise from an internal dynamo process. In turn, numerical experiments have shown that 
coherent, large-scale magnetic fields arise spontaneously in incompressible, homogeneous 
MHD turbulence, an effect that is especially clear in the ideal case, when viscosity and 
resistivity are zero [4,5], but is also evident in the dissipative case [6]. The inherent dynamo in 
MHD turbulence is statistical and involves broken ergodicity manifesting itself as a broken 
symmetry. The theory of this inherent dynamo has been elucidated relatively recently [7,8] 
and the aim here is to give a qualitative overview of the connection between MHD turbulence 
and magnetic dynamos; further mathematical details can be found in the references cited. 
 
2. Ideal MHD turbulence 
The Earth, due to its proximity, is our best-studied planetary body with regard to MHD 
dynamos and much has been written about it, e.g., [9]. The essential facts are that the Earth 
has a solid inner core and a large fluid outer core, both composed mostly of iron, as well as a 
mantle and then a crust overlying the core. Although density varies from top to bottom in the 
outer core by about 20 percent, the magnetofluid is usually treated as incompressible, 
allowing for a simplified mathematical model of its MHD flows. In addition, it is expected 
that kinetic and magnetic Reynolds numbers are large enough, and that there is enough 
convective stirring occurring, so that the outer core is filled with turbulent magnetofluid. In 
taking the limit of infinitely large Reynolds numbers, we arrive at ideal, incompressible MHD 
turbulence. The primary dynamical variables are the turbulent velocity field u and the 
turbulent magnetic field b; these are functions of time and position and satisfy ∇·u = ∇·b = 0. 
The basic equations of incompressible MHD turbulence are well known and are discussed in 
detail elsewhere, e.g., [10]. (Here we discuss only three-dimensional MHD turbulence.) 
 
To theoretically study and numerically simulate MHD turbulence, we use so-called Galerkin 
expansions, summations over a complete set of orthogonal basis functions, each with its own 
coefficient, to represent either u or b. Each term in the series satisfies given boundary 
conditions (b.c.s) and any other requirements that are imposed, so that a truncated expansion 
can approximate u or b to the desired accuracy. For example, if periodic b.c.s are used, then a 
Fourier (trigonometric) series is appropriate, while for a spherical shell with homogeneous 
b.c.s (to be defined below), then expansion in terms of spherical Bessel function-spherical 
harmonics can be employed. Galerkin basis functions are smooth and continuous, so that 
exact spatial partial derivatives can be found, while time dependence is completely contained 
in the expansion coefficients. In essence, a Galerkin method transforms the partial differential 
MHD equations into a finite set of nonlinear, coupled, ordinary differential equations. 
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The simplest geometry for analysis and simulation of a confined magnetofluid is that of a box 
with periodic b.c.s. The spherical case is more pertinent for the geodynamo, but b.c.s suitable 
for theory and computation must be determined. First, we assume that the outer core has 
concentric, spherical boundaries. The confined magnetofluid is ideal and the magnetic field is 
said to be ‘locked into the flow field,’ which moves it about, stretching and bending it. The 
magnetic field reacts back on the flow field and attempts to move it around, in turn. In this 
case, we assume that near solid physical boundaries, except in a thin boundary layer, both 
velocity and magnetic fields are essentially parallel to the boundary and that only inside the 
boundary layer does the magnetic field grow a nonzero component normal to the solid 
boundary. Then, for our mathematical boundaries, we use virtual spherical surfaces, sitting on 
top of the boundary layers, where we impose ‘homogeneous b.c.s.’ These homogeneous b.c.s 
are such that all primary (velocity and magnetic) fields and all derived fields (vorticity, 
electric current, magnetic vector potential) have zero normal components, but unconstrained 
parallel components, on the homogeneous boundaries [11]. (Homogeneous b.c.s appear 
justified when we look at numerical solutions from non-ideal MHD simulations with non-
homogeneous b.c.s [12].)  It turns out that the statistical mechanics of ideal MHD turbulence 
takes essentially the same form in either a periodic box [8] or in a spherical shell with 
homogeneous b.c.s [11], so that Fourier analysis and simulation serve as a viable surrogate for 
the seemingly more realistic spherical Bessel function-spherical harmonic approach. 
 
3. Statistical mechanics 
The set of expansion coefficients representing ideal MHD turbulence forms a conservative 
dynamical system that generally has not just one, but three constants of the motion: the energy 
E = ½∫(u2+b2)dV, cross helicity HC = ½∫u·bdV and magnetic helicity HM = ½∫a·bdV; the 
magnetic vector potential a is defined by ∇×a = b and ∇·a = 0, and integration is over the 
bounded volume V. When V rotates as a whole, HC is no longer constant, but →0 with time. 
Let ũ(k,t) and ),(~ tkb  represent expansion coefficients for the velocity and magnetic field, 
respectively. The wave vectors k have components such that |k| ≤ K < ∞; the lowest values of 
k = |k| correspond to the longest length-scale in the physical volume. The set of all 
independent velocity and magnetic field coefficients defines the phase space Γ of the 
dynamical system, whose dimension is proportional to K3. Statistically, the system is 
described by a canonical ensemble with partition function Z = ∫exp(−αE −βHC −γHM)dΓ; 
integration is over all of phase space Γ and the cofactors α, β and γ are called ‘inverse 
temperatures’ or ‘undetermined multipliers’ as their values are initially unknown. The 
probability density function is given by D = Z−1exp(−αE −βHC −γHM) and may be used to 
determine expectation values for the two independent, complex components of  ũ(k) or )(~ kb .  
 
Historical and theoretical details of ideal MHD statistics may be found elsewhere [8]. Here, 
only those details needed for a brief, qualitative discussion will be mentioned. To begin, the 
three inverse temperatures α, β and γ may be expressed as functions of only one unknown 
variable ϕ, which we have chosen to be the expectation value of the magnetic energy. Thus, 
the entropy functional of the system, σ(ϕ) = −∫DlogDdΓ is also a function of ϕ. As is well 
known [13], entropy is the minimum of the entropy functional. The value of ϕ appropriate for 
the finite dynamical system with given E, HC and HM is then found by determining the value 
ϕ = ϕo that minimizes σ(ϕ). Requiring dσ(ϕ)/dϕ = 0 yields 2ϕo ≈ E + κ|HM|[1 − (HC/ϕo)2], 
after much work [8,11], where and κ|HM| < E, and where κ = 1 for the periodic box Fourier 
case [8], while κ ≈ 1.8638 for a spherical shell geodynamo [11]. When the volume V is 



rotating as a whole, HC → 0 and ϕo ≈ ½(E + κ|HM|). In addition, analysis reveals that the 
energy in the longest wavelength mode is O(N) times greater than in any shorter wavelength 
mode in the system, where N is the number of modes (i.e., independent values of k in the 
Galerkin expansion). This is in contradistinction to ideal fluid turbulence, where the smallest 
length-scale modes have the most energy [14]. Dissipation depletes smallest length-scale 
modes quickly of their energy, while leaving the largest-scale modes relatively untouched. 
Thus, ideal results have much less relevance to real fluid turbulence, which has a direct 
cascade to smaller length scales in its energy spectrum [14], than for real MHD turbulence, 
which has an inverse cascade to larger length scales [15]. 
 
An advance in the statistical mechanics of ideal MHD turbulence was the discovery of ideal 
eigenmodes [7]. The phase space probability density D is a product of modal densities of the 
form Dk ~ exp[−ỹ†(k) Mk ỹ(k)]; ỹ is a 4 component, complex column vector whose Hermitean 
adjoint is ỹ†= [ )](~)(~)(~)(~ *
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The explicit form of eigenvectors ẽi(k) and transformation matrix Uk are given elsewhere [8].  
Corresponding to the eigenvalues , i = 1,2,3,4, the transformed vector ṽ(k) = U)(i

kλ k
†ỹ(k) has 

components )(~ kiv  : 
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These equations give the transformed variables or ‘eigenvariables’ )(~ kiv  for each mode and, 
implicitly, also give Uk and ẽi(k). Note that the equations for  and )(~

1 kv )(~
3 kv  are decoupled 

from the equations for  and . The eigenanalysis results given here will help in the 
discussion of broken ergodicity in the next section. 
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4. Broken ergodicity 
Each )(~ kiv  is has its own , which are given in (1). The matrix U)(i

kλ k ∈ SU(4) so that 

, i.e., each side expresses the energy in mode k. However, we 
have seen that the largest-scale mode κ contains O(N) more energy than any of the other N−1 
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modes. If we assume that HM > 0 , it can be shown [8,11] that γ < 0. Then, looking at (1), we 
see that ( k||2

1)4( γηαλ κκ +−= )  must be much smaller than any other , i = 1,2,3, or any 
other , k > κ, i = 1,2,3,4. Analysis [8,11] reveals that the fraction of energy in statistical 
equilibrium that is expected to reside in  is ~  ~1, while all other 

)(i
κλ

)(i
kλ

)(~
4 κv )4(/1 κλ )(~ kiv  are 

~ ~N)(/1 i
kλ −1; here, we have assumed E = 1, and that HM ≠ 0. Then, eigenvariable  is O(1) 

as N→∞, while 
)(~

4 κv
)(~ κiv ~ ε ≈ 0, for i = 1,2,3, and the equations for  and )(~

1 κv )(~
3 κv  in (2) will 

have left-sides that are O(ε); this is only achieved if 0)(~)(~)(~)(~
2121 ≈+≈+ κκκκ bibuiu , i.e., 

the negative helicity part of mode  is zero. Thus, the positive helicity parts of the largest-
scale mode κ , 

κ
)(~)(~

21 κκ uiu −  and )(~)(~
21 κκ bib − , are maximal. Since  and )(~)(~

12 κκ uiu ≈

)(~)(~
12 κκ bib ≈ , we have )(~)(~ κuκκu ×≈ i , )(~)(~ κbκκb ×≈ i  and )(~~)(~ κbκu , i.e., ‘dynamic 

alignment’ [10; pp. 78-79]. (These are Fourier case results [8], where κ = 1, but analogous 
results exist in the spherical geodynamo case [11], where κ = 1.8638.) 
 
In terms of the ideal MHD equations [10], these results imply that ~ ε ≈ 0, 
while for all other eigenvariables, 

dtvd /|)(~|log 4 κ
dtvd i /|)(~|log k ~ 1. Although statistical theory [15] 

ostensibly predicted that all )(~ kiv  have mean values of zero, this requires that all )(~ kiv  have 
sufficiently strongly stochastic forcing. Here, we have seen that when ideal MHD turbulence 
is in statistical equilibrium, it has generally entered into a single helicity state at the largest 
scale and that this state is quantified by the eigenvariable , which has far more energy 
than any other eigenvariable. This leads to a situation in which there is very little driving the 
eigenvariable  to change its value and it becomes almost static, while all other other 
eigenvariables continue to be driven relatively strongly and appear to have zero mean values. 
Thus, in MHD turbulence, we have broken ergodicity, defined [16] as occurring when, ‘In a 
system that is non-ergodic on physical timescales the phase point is effectively confined in 
one subregion or component of phase space.’ Broken ergodicity manifests itself in MHD 
turbulence as a stationary structure at the largest scales of the volume containing a turbulent 
magnetofluid. It produces an effectively coherent structure out of seeming chaos. We will see 
a numerical example of this in the next section. 
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5. Numerical simulation 
As an example of broken ergodicity, drawn from Fourier method MHD run 1a [6,8], consider 
fig. 1, showing )(~Re κiv  vs )(~Im κiv  from simulation time t = 0 to 200; + indicates the origin 
and • the initial point. Run 1a had E = 1, HC = 0.348, HM = 0.092, 643 grid points and 2×105 
time steps (Δt = 10−3). We have seen the same sort of behaviour in all of our ideal MHD runs 
(0 ≤ |HC| < E/2; 0 < |HM| < E), as long as they have enough time steps and enough grid points. 
When dissipation is added for the same initial conditions, the  begin to follow their ideal 
trajectories [6,8], but eventually turn back towards the origin as E → 0. The majority of the 
energy in  is magnetic; as κ|H

)(~
4 κv

)(~
4 κv M|/E →1, energy becomes purely magnetic and 

concentrates at k = κ. However, if a mean field (i.e., constant in space and time) BBo is added 
to b, HM → 0 with time, and the spectral peak at k = κ disappears, while if the volume rotates 
with angular velocity Ωo, the peak persists, but the energy in  is essentially all magnetic. 
Furthermore, as |Ω

)(~
4 κv

o| increases, the dipole moment vector μ begins to align with Ωo, but the 
angle between them saturates relatively quickly as |Ωo| increases, at around 20° for 
simulations on a 32  grid [17] (an effect which remains to be explained theoretically). 3



 

 
Figure 1: Evolution of (unnormalized) eigenvariables for κ = (1,0,0) from 643 run 1a [6]. 

 
6. Conclusion 
Here, we have presented theoretical and numerical results concerning MHD turbulence and 
magnetic dynamos. The principle conclusion is that a statistical process involving broken 
ergodicity and magnetic helicity creates inherent dynamo action in MHD turbulence, causing 
the emergence of a large-scale, coherent magnetic field. This result may be relevant to 
understanding the oigin of planetary and stellar magnetic fields. 
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