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Abstract : We study the galactic dynamo equations with random alpha-coefficient which 
takes two different values corresponding to warm gas and hot gas. Probability that alpha-
coefficient takes the value which corresponds to the hot gas is p. We obtain a critical value of 
the probability p, for which the dynamo cannot support the magnetic field growth and  
calculate the growth rates for various statistical moments of magnetic field.   
 
1. Introduction 
 
It is believed that generation of galactic magnetic fields is a result of dynamo based on a joint 
action of differential rotation and alpha-effect. Intensity of the effects are usually described by 
dimensionless parameters  and  [1]. αR ωR
 
Alpha-effect  depends on the temperature of the interstellar medium. If there are some 
intensive processes in the galaxy, such as star formation or supernovae explosions which 
create regions of ionized hydrogen then the turbulent motions including alpha-effect can be 
changed. In order to include that in galactic dynamo we consider the alpha-effect parameter as 
a random process such as alpha takes two different values. The first value is connected with 
warmed atomic hydrogen, and the second one describes the turbulent motions in regions with 
highly ionized hot gas. The second option occurs with probability p which is connected with 
ratio between hot and warm gas components. 
 
2. The model 
 
We exploit the so-called no-z model which replaces  z-derivatives (z-axis is perpendicular to 
the disc plane) by some algebraic expressions and obtain the magnetic field component 
perpendicular to the disc plane from the solenoidality condition [2, 3]: 
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where  and  are the magnetic field components in the disc plane, is the 
dimensionless amplitude of alpha-effect, is the dimensionless amplitude of differential 
rotation, 

rB ϕB αR

ωR
Rh /=λ is the disc aspect ratio, where  is the half-thickness of the galaxy disc, h R  



is its radius. The distances are measured in galactic radii ( 10 << r ), and time is measured in 

η

2h where η is the turbulent diffusivity. A conventional estimate is , .  1~αR 10~ωR

 
We assume that  and are described by a random law: 10=ωR αR
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The memory time for is 0.01 or (in some cases) 0.1. αR
 
3. Local approach 
 
Here we present the results for the simplest case of an infinitely thin disc and neglect the 
losses due to diffusion in the disc plane. Then 0=λ and the dynamo equations read 
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We introduce the so-called dynamo number .ωα RRD =  If generation is weak, i.e. dynamo 
number is small, magnetic field decays, if however dynamo number exceeds a critical value 

 magnetic field grows.  ,7≈crD
The dynamo equations (3) – (4) can be rewritten in the matrix form: 
 

( ) ( ) .

4

4,, 2

2

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−−
=

π

π

α

ω

ϕϕ

R

R
BBBB

dt
d

rr                                        (6) 

 
which can be solved as follows:  
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where  is the transition matrix: nC
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and: 
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Let 
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The angle θ  at every time  has some distributiontntn Δ= )(θπ n , which can be described by 
so-called transition probability density: 
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For the distribution function has a limit: ∞→n ).()( θπθπ ∞→n Then, the magnetic field 
grows rate is 
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where ( )αα sin,cos=wr  and α  has the limit distribution )(απ∞ [4]. 
 
 
4. Results 
 
First of all, we investigate the dynamo equations numerically for various values of p (Fig.1). 
The magnetic field grows for  and decays for higher ,43.0<p p . 

 
Figure 1: The magnetic field growth for various .p  The solid line shows  the long-

dashed one -  the short-dashed one - 
,30.0=p

,40.0=p .50.0=p  
 
 



The typical growth rates of various statistical  momentums of B are given in Table 1. The 
higher momentums grow faster than lower ones. We found analytically the limiting 
probability density π (Fig. 2) and calculate the magnetic field growth rate analytically using 
this density. Numerical and analytical estimates are compared in the Table 1.  
 
We note that the theoretical estimates for the magnetic field growth rate are systematically 
larger than the numerical ones. Presumably, it means that the theoretical growth rate is 
determined by very rare random events. Another manifestation of intermittency [5] is the fact 
that the growth rates of statistical moments grows with the order of the moment.  
 
 

Table 1: Velocities of different magnetic field momentums growth 
 Βγ  Βγ  

2B
γ  theorγ  

30.0=p  0.219 0.224 0.227 0.250 
40.0=p  0.040 0.052 0.056 0.065 
50.0=p  -0.133 -0.132 -0.128 -0.116 

 
 

 
Figure 2: The probability density for different  the solid line shows :n ,20=n the long-dashed 

line -  the short-dashed one - ,50=n .100=n  
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