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Magnetic fields are widely distributed in the Universe. Generation of the magnetic fields 
accompanied by the transformation of the kinetic energy of the conductive liquid to the 
energy of the magnetic field is a subject of the dynamo theory [1]. In general, dynamo 
equations include equations of thermal or (and) compositional convection as it is in planetary 
dynamo as well as the induction equation for the magnetic field B. These equations have a set 
of quantities (integrals of motion), which can conserve, provided diffusion effects as well as 
the external forces are absent. Thus in 3D the Navier-Stokes equation conserves the mean 
over the volume kinetic energy EK = V2/2 and kinetic helicity χ = <V·rotV>, where <…> 
denotes averaging over the domain and V is the velocity field. The Navier-Stokes equation 
with the induction equation conserves the magnetic helicity χM = <A·B> and the so-called 
cross-helicity χC = <V·B>. Here A is the vector potential of the magnetic field B = rotA. 

For each of these quantities one can derive from the original dynamo system its own 
evolution equation. However, these new equations already are the simplified forms of the 
original equations; its study can be instructive and sometimes tell us something new without 
solving more sophisticated full dynamo equations. So as helicities by definition can change 
the sign, its conservation in the full volume of generation can be trivial. Moreover, some of 
these quantities can change its sign with transition from large-scales to small ones. That is 
why understanding of the structure of these quantities in the physical and wave spaces is 
important. 

Here we consider this problem on an example of a rapidly rotating flat layer heated 
from below, where thermal convection of the conductive fluid takes place. The axis of 
rotation and the gravity direction coincide. The mathematical model is close to that in [2]. We 
used the Boussinesq approximation with the fixed temperatures at the boundaries z = 0, 1, the 
stress-free and non-penetrating boundary conditions for the velocity field V. The parameters 
of convection are chosen in such a way that to mimic the geostrophic state with the cyclonic 
cell forms typical to the planetary convection in the cores of the planets [3]:    the Ekman 
number E = 2x10-5, the Prandtl number Pr = 1, the Roberts number q = 2, and the modified 
Rayleigh number Ra = 300. 

The magnetic equation is written for the vector potential of the magnetic field,   
accompanied with the pseudo-vacuum boundary conditions. For all the considered physical 
fields the periodical boundary conditions in the both horizontal directions are applied. To 
solve these equation we used the control-volume method (SIMPLE algorithm by Patankar [4]) 
adopted to the cluster parallel computers using MPI. To solve equations we used the mesh 
grids 1283 in all directions. 

We started simulation for the pure convective regime, see evolution of the mean over 
the volume temperature fluctuations from the non-convective temperature profile and mean 
kinetic energy in Fig.1ab. The developed turbulent convection is anisotropic with cells 
elongated along the axis of rotation and with perpendicular scale ~E1/3. After the one diffusion 
time (based on the thermal diffusion) at the moment T = TB the seed of the magnetic field was 
introduced. The kinematic dynamo stage continued also about one diffusion time before the 
full dynamo state has developed, Fig.1c. 
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To follow evolution of the physical fields and its derivatives in the wave space we used 
the wavelet transform based on the complex Morlet wavelet for the space coordinates. 
Normalization of wavelets is chosen in such a way that to the periodic signals with different 
periods and equal amplitudes correspond the equal spectral amplitudes. Application of the 
wavelets for the non-periodical fields, like turbulence, seems more natural rather using the 
fast Fourier transform. Due to the rapid rotation it is important to distinguish two directions: 
along and perpendicular to the axis of rotation, so that one has two spectra on the 
wavenumbers , and , correspondingly. Latter we consider only the transversal spectra, 
which are more effected by rotation. 
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Figure 1: Evolution of the temperature fluctuations (a), kinetic (b) and magnetic (c) energies in the 

rotating layer. In the moment TB magnetic field is switched on. B

 
So as helicities can change its sign in the middle horizontal plane, for all the quantities 

we consider spectra at some point with the fixed horizontal coordinates (x0, y0) and integrate 
all the  values in the vertical coordinate in the range z=[0, 0.5]. 

Evolution of the wavelet spectra is presented in Fig.2. The increase of the magnetic 
energy EM to the nonlinear level is accompanied with the decrease of the kinetic energy EK 
about 30%. 

The cyclonic convection, developed due to the geostrophic state, is a source of the mean 
kinetic helicity in the system, which is believed to be a source of the large-scale magnetic 
fields in the planets. Equation for the kinetic helicity generation due to the Coriolis force can 
be derived from the following relation: ~
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summation over the repeated indexes is assumed. Finally, due to the periodical boundary 
conditions in the horizontal directions, evolution of the mean kinetic helicity over the lower 
half-volume can be estimated as: 
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zero at z = 0, helicity is positive in the lower half-volume, where flow converges. In the upper 
half-volume z = [0.5, 1], where flow diverges, the sign of helicity is opposite. Note that these 
arguments can be used also for the certain wavenumebr fk⊥  provided the Rossby number for 



fk⊥  is small. This estimate is supported by our simulations where χ is positive in the lower 
half-volume at all k . ⊥

The next one is the current helicity χJ = <J·B>, where J is the electric current (Fig.2d). 
In contrast to the kinetic helicity, χJ has different signs at the small and large scales. This 
phenomenon calls the separation in scales [5]. As well as the kinetic helicity, the current 
helicity is anti-symmetric in respect to the middle plane z=0.5. It is known that χJ is closely 
connected to the magnetic helicity χM, see [5]. In the same time, it is based on the physical 
quantities J and B, which can be derived from observations. Information on the signs of χJ at 
the different scales can be used for extrapolation of the observable fields to the invisible part 
of the spectra. This situation is common for the solar physics, e.g., for the solar active regions 
[6]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Evolution in time of the transversal wavelet spectra of the kinetic (a) and magnetic (b) 
energies, kinetic (c), current (d), magnetic (e), and cross- (f) helicities. 

 
Magnetic helicity χM is the integral of the induction equation, based only on the 

magnetic quantities A and B. Note, the vector potential A is defined up to the gradient of 
some arbitrary function. This fact requires careful treatment of the magnetic helicity, see [5]. 
Spectrum of χM, presented in Fig.2.e also demonstrates the effect of the scales separation. The 
rough estimate leads to a simple relation between χJ and χM: 2~ .J Mkχ χ⊥  

The last kind of helicity is the cross-helicity χC, which is also the invariant of the 
dynamo equation in the limit of zero dissipation and absence of the external forces. Its 
evolution and structure of the spectra (Fig. 2f) differ from the previous kinds of helicities. It 
has no separation in scales but the sign of χC, which is the same at all the scales, changes in 
time. The additional integration in x-y plane leads to the very negligible estimate of χC over 



the half-volume. Note that due to the quadratic dependence of the Lorentz force on the 
magnetic field B, the hydromagnetic states with B and –B are equivalent. It means that 
existence of the non-zero χC with the rapidly alternating magnetic field in time, like it happens 
in the turbulent flow, would contradict this statement. 
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