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Abstract: We perform simulations of the kinematic induction equation in order to examine a 
helical flow of a conducting liquid interacting with magnetic material with permeability μ > 1. 
We examine two paradigmatic systems that reflect the flow conditions in the core of a sodium 
fast reactor, and we show that in the limit of large μ the critical magnetic Reynolds number 
required for the onset of dynamo action is reduced by 25%.  
 
1. Introduction 
 
The experimental confirmation of the magnetohydrodynamic dynamo effect has been of great 
importance for the understanding of geo- and astrophysical magnetic fields. Besides of this 
fundamental relevance, a complementary argument for the development of dynamo experi-
ments originated from considerations on the safe operation of sodium fast reactors [1] because 
the helical structure of the flow in the core (figure 1), combined with the large flow rate, 
provides appropriate prerequisites for the occurrence of dynamo action. However, this effect 
is undesired, because the backreaction of a self-excited magnetic field may cause an inhomo-
geneous flow braking or a pressure drop in the cooling system, so that an efficient 
removement of heat from the reactor core can be hampered with unknown consequences for 
the safety of the reactor.   

 
Figure 1: Idealized composition of the core of a sodium fast reactor. (a) Nuclear fuel rod surrounded by 
a screw-like spacer that forces the flow on a helical path.  (b) A few hundreds of fuel rods are bundled 

into so-called assemblies. (c) The whole reactor core is composed of a few hundreds of assemblies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Previous studies have shown no conclusive evidences for the occurrence of dynamo action in 
the core of a fast reactor [2,3,4,5], but it is hypothesized that the parameter regime reached by 
the French fast breeder reactor Superphenix is well within the range that allows for dynamo 
action if some magnetic material is introduced into the core [6].  In the present study we 
revisite the arguments from [6], and in order to develop global models for electromagnetic 
induction in the core of fast reactors we resort to the mean-field dynamo theory [7] which 
allows a consideration of tens of thousands of helical flow cells in terms of an α- and β-effect 
including the impact of magnetic material. We develop and validate the necessary 
methodology required for the computation of the mean-field coefficients which may be used 
for future estimates of dynamo action in systems that are characterized by different size and 
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different magnetic materials. The examination of the impact of magnetic material is motivated 
by the key role of soft iron impellers for the VKS dynamo and by the repeatedly manifested 
idea to make use of Oxide Dispersion Strengthened (ODS) ferritic/martensitic alloys in the 
core of a fast reactor. These alloys have a lower sensitivity for nuclear radiation, but exhibit a 
permeability much larger than one. We start with the analysis of the induction action of the 
fully resolved velocity field and compute the mean-field coefficients required for a consistent 
mean-field model using the testfield method [8]. In a second step we use the α- and β-
coefficients as an input for mean-field dynamo simulations in order to proof that mean-field 
models are capable to reproduce the growth-rate and principle field structure of the fully 
resolved model by requiring much less computational efforts. 
 
2. Mean-field dynamo theory and testfield method 
 
We splitt the magnetic field and the velocity field into a mean, large scale part and a small 
scale part: b+B=B and u+U=U . Then the mean magnetic field is governed by the mean 
field induction eqaution: 
 

( )BbuBUB ×∇−×××∇∂∂ η+=t/  (1) 
 

which includes a term called the mean electromotive force buF ×= , which only depends on 
the statistical properties of small scale flow and small scale field. Under the assumptions that 
the variations of B around a given point are small, F  can be represented by the first terms of a 
Taylor expansion 
 

./ kjijkjiji xBβ+Bα=F ∂∂  (2) 
 

In order to compute the mean-field coefficients we utilize the testfield method developped by 
Schrinner et al [8]. In that method ijα and ijkβ are computed from different realizations of the 
electromotive force that are obtained from externally applied, linearly independent mean 
fields. Defining the small scale velocity as the deviation from the horizontal average, the 
small scale magnetic field is computed numerically by solving 
 

( )( )bbubuBubUb ×∇−×−××××∇∂∂ η++=t/ . (3) 
 

Then the electromotive force is computed directly by correlating small scale flow with the 
small scale field and subsequently performing a horizontal averaging. The combination of 
different realizations of F obtained from different, linearly independent testfields yields a lin-
ear system of equations, whose solution gives the desired mean-field coefficients. In order to 
compute mean-field coefficients that are consistent with the structure of the large scale field 
from the fully resolved model, it is necessary to consider the scale dependence of the mean-
field coefficients by choosing appropriate testfields. We define the testfields as follows: 
 

( )yB )πz= cos1 and ( )yB )πz= sin2  (4) 
 

which is in agreement with the definitions used by [10]. 
 
3. Flow model and permeability distribution 
 
In the present study we examine two paradigmatic flow models: In model A we assume a 
flow consisting of various helical eddies that are separated by walls (left panel in figure 3). 
Following the idea of [3], the helical flow within one cell represents the mean flow within one 
assembly of nuclear fuel rods ignoring the even smaller scale flow around individual rods. 
The second approach (model B, see right panel in figure 4) uses a more detailed picture of the  



flow conditions within a single assembly. The model is based on the so called spin generator 
flow that has been utilized for the simulation of the Karlsruhe Dynamo [9] and assumes a 
circular flow around a central rod superimposed with a constant vertical flow.  
In order to characterize the amplitude of the flow we define a local magnetic Reynolds 
number that is based on the flow amplitude u0, the “normal” magnetic diffusivity 

( ) 1
0

−σμ=η and the size D of a single eddy (model A) or the distance between two adjacent 
rods (model B): ηDu=Rm 0 / . 

In order to incorporate the effects of a non-uniform permeability distribution in terms of 
mean-field coefficients we rewrite the induction equation in the form  

 
Figure 2: Flow pattern for model A (left) and model B (right). The gray shaded regions 

represent walls or rods and may have a permea-bility μr >1. The vertical flow is constant in 
each cell and vanishes in the wall/rod regions. The horizontal flow is denoted by the arrows.

 

( )BBBUB ×∇−×∇××∇∂∂ ημη+=t rln/  (6) 
 

with ( ).rμη=η r/ This modified induction equation contains an additional velocity-like term 
( ) ( )rμη=ru ln∇ which contributes to the mean flow as well as to the small scale flow when 

applied in the testfield method. 
 
4. Results 
 
The results for a uniform permeability distribution with 1=μr are shown in figure 3. The α-
effect is in accordance with the results reported by [9] in case of the ideal Roberts flow. In the 
same way we write ( )RmΦDRmKη=α 2/ with a non-analytic function Φ that only depends on 
Rm and a normalisation factor K that is universal for each model and does not depend on the 
cell size D. Regarding the coefficient β we find significant differences between both models. 
In model A we see a transition to negative values (but in a way that the sum of η and β 
remains positive), whereas the β-effect remains allways positive in model B. The right 
column in figure 3 shows a comparison of the growth-rates from the fully resolved models 
(FRM) with the corresponding mean field models (MFM) that made use of the coefficients 
determined from the FRM. The mean field induction equation that is solved numerically reads  

where the coefficients α, β, γ and 2δ are related to the tensor elements from Eq. (2) 
by yxxyyxzxyzyyxx α=α=γ,-β=β = β ,α=α=α −−− and yyzxxz β=β=δ2 . 

( )( ) ( )( )BzBzBzBzBzBBUB ∇⋅−×−×∇−⋅−×−−××∇∂∂ ˆ/ˆˆˆˆ/ 2δdzdβηγα=t  (7) 

We obtain a good agreement between FRM and MFM if the system is not strongly over-
critical. The agreement improves for an increasing number of helical eddies. However, the 



Figure 3: Mean field coefficients and growth-rates versus Rm for μr=1. From left to right: Φ, β, and 
growth-rates. Solid curves denote the growth-rates from the fully resolved model (FRM) and dashed 
curves denote the growth-rates from the mean-field models (MFM). Top row: model A, bottom row: 

model B. 

results become more complex when μr > 1 (figure 4). For a fixed μr we always find that α 
grows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with increasing Rm. Both models show a different behavior concerning the dependence on μr. 
For model A, we observe a significant supression of α for small μr, followed by a slow 
recovery for larger μr. In contrast, we see a moderate increase of α for small μr in model B 
followed by a saturation regime for μr>1. 
Regarding the coefficient β, we find an abrupt transition to negative values around 3≈rμ in 
model A, whereas β increases linearly with increasing μr in model B, which, furthermore, 
does not show any indications for a transition to negative values.  
Again, we find a good agreement between the FRM growth-rates and the MFM growth-rates 
but with some increasing deviations for large Rm and large μr. Considering the whole range of 
achievable μr  in model A we find a reduction of the critical magnetic Reynolds number from 
Rmcrit = 4.2 at μr = 1 to Rmcrit = 3.2 at μr = 20. The relative reduction is roughly the same for 

Figure 4: Mean field coefficients and growth-rates versus μr. From left to right: α, β, growth-rate. The 
solid curves on the right panel show the FRM growth-rates, the dashed curves show the MFM growth-

rates. Top row: model A, bottom row: model B. 



 
Figure 5: Critical magnetic Reynolds number for the onset of dynamo action 

versus permeability. Left: model A, right: model B. 

model B, where Rmcrit = 2.0 at μr=1 is reduced to Rmcrit = 1.5 at μr = 20 (figure 5). Regarding 
the asymptotic behavior for large μr in figure 5 it seems unlikely that a further increase of μr 
will provide for a further significant reduction of Rmcrit. 
 
5. Conclusion 
 
We have performed numerical simulations of the kinematic induction equation for two 
different helical flow types including internal walls or rods that may have magnetic 
properties. In the limit of large permeability, we found a moderate impact of μr on dynamo 
action in terms of a reduction of Rmcrit of roughly 25% compared to the non-magnetic case. 
Comparing the growth-rates obtained from fully resolved models with the corresponding 
mean-field models we found a good agreement between both approaches, at least for μr < 20.  
For non-magnetic internals we show that the α-effect can be expressed in terms of a function 
Ф that allows a conclusion on α for larger systems when flow scale and flow amplitude are 
known. In combination with the β-effect, which is roughly independent of the flow scale, this 
allows a modelling of systems that may consist of tens of thousands of individual helical cells 
embedded into some large scale flow structure.  
The possible application to specific reactor cores will need much more information on 
geometric details and material properties, such as the size of the core, the number of fuel rods 
contained therein, and the total flow rate as well as the consideration of the hexagonal 
geometry of the assemblies, which will be left for future work. Nevertheless, we believe that a 
consideration of these details will only result in minor modifications to our findings and are 
therefore of secondary importance.  
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