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The problem of instabilities in the buoyant convective flows subject to high magnetic fields
is of particular importance in such industrial applications as fusion reactor blankets, semicon-
ductor crystal growth and electromagnetic processing of materials. In the present study we
investigate linear stability of buoyancy-driven convection in a laterally heated layer between
two infinite plates subject to a uniform, vertical magnetic field and in the presence of gravity.
The mechanisms for different wall conductivities and different values of Hartmann, Ha, and
magnetic Prandtl, Prm, numbers are investigated. We compare the problem for small, but
non-zero Prm, with the inductionless approximation in order to determine the validity of that
approximation. Linear stability results show that the instability critically depends on the elec-
trical and thermal boundary conditions, and on the Prandtl number, Pr, and on Ha and Prm.
The instability is driven by different mechanisms depending on these parameters.

1 Problem formulation

Figure 1. Schematic diagram of the
buoyant convective flow with
horizontal temperature gradient and
a vertical magnetic field

Consider the problem of linear stability of
buoyancy-driven convection resulted from axial
heating of a fluid layer bounded by infinite hor-
izontal rigid plates, as shown in Fig. 1. The
flow, subject to a uniform, vertical magnetic field
B0 = B0ez is studied in the presence of gravity
g. Here (x, y, z) are Cartesian co-ordinates. In a
laboratory implementation, two opposite vertical
boundaries are set at different temperatures and
the horizontal gradient drives the fluid upward
near the hot and downward near the cold wall.
The flow is time-dependent, viscous, electrically
conducting and incompressible. Material param-
eters of the fluid are defined by the density ρ, kine-
matic viscosity ν, thermal conductivity κ, ther-
mal expansion coefficient β and electric conduc-
tivity σ. Constant horizontal temperature gradi-
ent, which induces a steady circulation, is applied.
The top and bottom rigid boundaries of the layer
can be either perfectly insulating or perfectly con-
ducting, both thermally and electrically.



2 Governing equations and boundary conditions

The behaviour of the flow is governed by the set of magnetohydrodynamic equations combin-
ing Navier-Stokes equations of motion of fluid substances, the energy equation and Maxwell
electrodynamics equations. Detailed derivation of these equations has been presented in [1].

The nondimensional form of governing equations results from scaling the length by a
reference distance d (the distance between walls), time by d2/ν, velocity by ν/d, pressure
by ρν2/d2, temperature by ∆T and magnetic field by B0. Nondimentional Hartmann, Ha,
Grashof, Gr, and Prandtl, Pr, numbers are used as control parameters: Ha = B0d

√
σ/(ρν),

Gr = gβ∆T (d4/ν2), Pr = ν/κ, Prm = µσν.
The resulting set of nondimensional equations governing the motion of the fluid is:

∂tv + (v · ∇)v = −∇p+∇2v +
Ha2

Prm
(∇×B)×B +GrT êz , (1)

∂tB + (v · ∇)B =
1

Prm
∇2B + (B · ∇)v , ∂tT + (v · ∇)T =

1

Pr
∇2T , (2),(3)

where v, p, B, T are the fluid velocity, pressure, magnetic field and temperature, respectively.

2.1 Basic flow

The problem of buoyant convective flow subject to a vertical magnetic field has a steady mean
flow solution [2] with velocity u0 = [u0(z), 0, 0], magnetic field B = [b0(z), 0, 1] and temperature
T0(x, z) profiles:

u0 =
Gr

Ha2

{
z − sinh(Haz)

sinh(Ha)

}
, (4)

b0 =
PrmGr

Ha2

{
cosh(Haz)

Ha sinh(Ha)
− 1

2
z2 +

1

2
− cosh(Ha)

Ha sinh(Ha)

}
, (5)

T0 = −x+
PrGr

Ha2

{
sinh(Haz)

Ha2 sinh(Ha)
− 1

6
z3 +Dz

}
, (6)

with D = 1
6
− 1

Ha2
for thermally conducting and D = 1

2
− cosh(Ha)

Ha sinh(Ha)
for thermally insulating

walls.

2.2 Disturbance equations and boundary conditions

In order to test whether the equilibrium state is stable, reaction of the system to small pertur-
bations is examined. The stability is investigated here by the linear analysis. Assuming that
disturbances to the flow are fully 3D, the flow can be decomposed into the base flow and the
fluctuating component F = F0 + f̃(x, y, z, t). Additionally the perturbations can be expressed
with Fourier expansions in the x− and y− directions f̃(x, y, z, t) = f̂(z) exp{ixkx + iyky + λt},
where kx and ky are the wavenumbers in the x− and y− directions, respectively, and λ = λr+iλi
with real part λr representing the growth rate and λi an angular oscillation frequency.



Assuming that the introduced perturbation is infinitisemally small, the problem is linearised.
Additionally in order to reduce the number of variables the vorticity vector is introduced ω =
∇×v. This leads to the following set of equations for the disturbed vorticity, velocity, magnetic
field, electric current components, and the disturbed temperature:

{D2 − u0ikx}ω̂z + (∂zu0)ikyŵ +Ha2{∂z + b0ikx}ĵz −
Ha2

Prm
(∂zb0)iky b̂z = λω̂z , (7)

{D4−u0ikxD2 + (∂2zu0)ikx}ŵ+
Ha2

Prm
{+D2∂z + b0ikxD

2− (∂2zb0)ikx}b̂z−Grk2θ̂ = λD2ŵ , (8)

{ 1

Prm
D2 − u0ikx}b̂z + {b0ikx + ∂z}ŵ = λb̂z , (9)

{D2 − Prmu0ikx}ĵz + {b0ikx + ∂z}ω̂z + (∂zb0)ikyŵ − (∂zu0)iky b̂z = λPrmĵz , (10)

{Pr−1D2 − u0ikx}θ̂ − {∂zT0 + i(∂xT0)
kx
k2
∂z}ŵ − i(∂xT0)

ky
k2
ω̂z = λθ̂ . (11)

Here the operator D = ik + [0, 0, ∂z] has been introduced.
The appropriate boundary conditions have been applied at the top and bottom rigid bound-

aries. In the case of thermal and electromagnetic boundary conditions, limit cases are considered
here: perfectly conducting or perfectly insulating. These conditions are:

ω̂z = 0 and ŵ = ∂zŵ = 0 at z = ±0.5 ,
θ̂ = 0 for thermally conducting and ∂z θ̂ = 0 for thermally insulating walls at z = ±0.5 ,
∂z ĵz = 0 and b̂z = 0 for electrically conducting walls at z = ±0.5 ,
ĵz = 0 and {∂z ± k}b̂z = 0 for electrically insulating walls at z = ±0.5.

3 Linear stability results

The problem has been solved numerically by the Chebyshev spectral collocation method and
the numerical linear stability results have been obtained. Characteristic lows are given by
the critical Grashof number, Gr, (giving the strength of buoyancy forces) as a function of
parameters. Beyond those critical values, the basic flow loses its stability. Such neutral stability
results have been calculated for fixed values of Pr and Ha, defining (Gr)crit for which an
eigenvalue has a real part equal to zero, by minimisation along kx and ky.

Here we present the results for the transverse modes (ky = 0) having their axes perpendicular
to the main flow. For Prm → 0 the electrical boundary conditions show no effect on the
transverse instabilities. The magnetic field stabilises these modes very efficiently shifting the
onset of instabilities to higher Grashof numbers. The stationary instabilities reach the limiting
values at Ha ' 14.5 for the thermally conducting case and Ha ' 11.5 for the thermally
insulating case, before their disappearance (Figs. 2 and 3). The wavenumbers are slowly
decreasing with Ha until reaching the minima just before the disappearance of these modes. At
the higher values of Ha, instabilities appear mainly as a result of potentially unstable thermal
stratification zones near the horizontal boundaries and exist only for thermally conducting
cases.

The inductionless approximation is confirmed to be valid for Prm up to Prm = 10−4 for the
range of Ha considered here. An increase of the value of Prm results in a divergence between
the two cases of electromagnetic boundary conditions.
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Figure 2. Critical values of parameters, thermally & electrically conducting walls
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Figure 3. Critical values of parameters, thermally conducting & electrically insulating walls.

The stationary branches, for all the boundary conditions, lie very closely to one another for
different magnetic Prandtl numbers, with the lower Prm modes disappearing at slightly lower
Ha values. The wavenumber decreases with the increasing Prm, which is apparent for the ther-
mally insulating cases (Figs. 4 and 5; notice that all the modes in these figures are stationary).
The increase of Prm number has a stabilising effect on thermal oscillatory branches for both
cases of electromagnetic boundary conditions (Figs. 2 and 3). The osciallatory instabilities
appear at higher frequencies for the higher Prm, while the wavenumbers decrease causing the
increase of the marginal cells.

We observed new branches of instabilities for the cases of electrically insulating walls (Figs.
3 and 5). The new modes appearing at higher Ha in the case of thermally conducting bound-
aries are more stable (Fig.3), with low wavenumbers and relatively low frequencies. The new
stationary instabilities, appearing for both thermally conducting and insulating boundaries,
become the most dangerous modes (Figs. 3 and 5).
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Figure 4. Critical values of parameters, thermally insulating & electrically conducting walls.
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Figure 5. Critical values of parameters, thermally insulating & electrically insulating walls

4 Conclusions

The results show that the inductionless approximation is valid for the values of Prm up to
Prm = 10−4 for the range ofHa considered here. Further increase of Prm will cause a divergence
between different modes, depending on the boundary conditions, and on the values of critical
parameters. For the case of electrically insulating boundaries there are new most dangerous
instabilities appearing for the whole range of Ha. The detailed results of this investigation,
together with the results for the longitudinal modes will be discussed in a full journal paper.
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