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Abstract: For applications in nuclear fusion reactors where magnetic fields are very strong, 
liquid metal flow in the core of ducts can often be regarded as inertialess and practically 
inviscid, while viscous effects are localized in thin boundary layers. The intense 
electromagnetic Lorentz forces, resulting from the interaction of induced electric currents and 
imposed magnetic field, tend to remove flow variations along magnetic field lines and they 
force the fluid to circulate mainly in planes perpendicular to the field. The established quasi-
two dimensional (Q2D) magnetohydrodynamic (MHD) flow can be predicted by means of an 
approximate model by reducing the basic governing equations to a 2D problem by analytical 
integration along magnetic field lines. Such models have been applied in the past by 
numerous authors to investigate duct flow problems and magneto-convection. However, 
limitations of those Q2D approaches have never been systematically studied.  

1. Introduction 

Liquid metal flows in strong magnetic fields are dominated by Lorentz forces, and viscous 
effects are confined to very thin boundary layers. The flow in the inviscid core is highly 
correlated along magnetic field lines and changes of variables in this direction are often 
negligible. This fact has been exploited in the past to derive Q2D model equations following 
the ideas proposed by Sommeria & Moreau (1982) [1]. Q2D models enable an efficient 
solution of 3D MHD problems, e.g. for shear flow instabilities [2] [3], DNS simulations of 
Q2D turbulent flows [4], including heat transfer and buoyant flows [5] [6] [7], interpretation 
of experimental data [8] [9], or simulations for fusion blanket applications [10] etc. It has 
been shown that results for inertial isothermal flows obtained by the Q2D model can be 
further improved by a proper modeling of inertia terms, which leads to “barrel” or “cigar” 
shape flow patterns aligned along the magnetic field [11] [12] instead of pure 2D structures.  

The purpose of the present work is showing that Q2D models may have significant deficits for 
particular classes of buoyant flows, a fact that is not at all obvious from a first point of view. 
As an example we consider buoyant MHD flows in a horizontal liquid metal layer of height 
H, length lH and width 2aH (see Figure 1). We apply the Q2D model equations and compare 
results with 3D numerical simulations of full governing equations. Such geometries are 
typical in horizontal Bridgman crystal growth or for liquid metal blankets of fusion reactors.  

Figure 1 Sketch of geometry and coordinates. 
The flat cavity, filled with liquid metal, is 
differentially heated at x/H=½l, such that a 
mean axial temperature gradient x̂G  
establishes. Top and bottom walls at y/H=½ 
have temperature profiles that vary linearly 
between the values of the differentially 
heated walls. The other walls are adiabatic.  
The convective motion is damped by a 
horizontal magnetic field. 



2. Model equations 

Buoyant flows of viscous, electrically conducting fluids in a uniform horizontal magnetic 
field are described by nondimensional equations for balance of energy, momentum and mass, 
by Ohm’s law and by an electric potential equation to ensure charge conservation ⋅j = 0:  
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Here T, u, zB ˆ , j, p and   stand for the temperature difference with respect to a reference 
value, velocity, magnetic field, current density, pressure and electric potential, scaled by 
characteristic values T, u0, B0, u0B0, u0B0

2H and u0B0H, respectively.  Dimensionless 
parameters are the Prandtl number, Grashof number and Hartmann number: 
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Kinematic viscosity , thermal diffusivity  and electric conductivity  are assumed to be 
constant,  is the density at the reference temperature and  is the volumetric thermal 
expansion. B0 is a typical magnitude of the magnetic field, u0 = /H and T is derived from 
the mean horizontal temperature gradient x̂G  as T = GH. At walls we have no-slip u = 0. 
Currents may continue their path inside walls and create there a distribution of wall potential 
according to the thin-wall condition [13], j⋅n = cw

2w, where c = wtw/(H) stands for the 
conductance ratio of walls with conductivity w and thickness tw, w

 is the gradient in the 
plane of the wall and the unit normal n points into the fluid.  

It is well known that for strong magnetic fields, Ha 1, the flow takes place preferentially in 
planes perpendicular to B, i.e. u ≈ u, and it is described by an equation for the field aligned 
component z  of vorticity uω   that is obtained by taking the curl of (2)  

   zzxzzt jHaTGr  
22D u . (7)

Following the ideas usually referred to as Q2D approach (see [1] and others), the vorticity 
equation (7) and potential equation  (5)  are integrated along magnetic field lines (overbar 
above variables denotes average along field lines);  
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When Q2D models are applied, it is usually assumed that the potential does not change along 
magnetic field lines,   Haz   . With the thin-wall condition   Hz cazj 2  

[13] and viscous friction   zzz Haaz    applied at the Hartmann wall, jz and H   
can be eliminated from (8) and (9)  and the Q2D equation vorticity becomes  
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Instead of solving (10) we may solve the following equation, the curl of which yields (10):  
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The model derived above is valid only for a uniform horizontal temperature gradient as shown 
in the following. For liquid metals with Pr1 conduction heat governs (1) which supports the 
ansatz T=x+Pr, where  describes deviations from pure heat conduction.  Flows with Gr 1 
and Ha 1 are dominated by the right-hand side of (7), through a balance between Lorentz 
forces and buoyancy, and for Pr  1 current density and potential become approximately 

 22 // HaGrTHaGrj xzzzz   . (12)

By integration along z the potential  and its mean value   along z are determined as 
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where the potential H at the Hartmann wall at z = a has been introduced as integration 
function. Already at leading order the potential  is not at all uniform in the core along field 
lines.  For flows where constTx   the last term in equation (13) depends also on (x,y) and 

finally an additional contribution will appear in (11).  Moreover, the electric properties of 
field aligned walls never enter into the Q2D model, although their conductance may have an 
essential impact on the global closure of current paths with severe consequences for the flow. 
This will be shown in the following by some selected examples. 

3. Results 

Let us first consider flows in a perfectly electrically conducting cavity with c=∞. Results from 
numerical simulations using Q2D and full 3D equations are compared (the latter ones with up 
to 8⋅106 grid points, all layers well resolved, grid-independent results achieved). Figure 2 
shows contours of velocity magnitude in the vertical symmetry plane z=0 for a=1, Gr=108, 
Pr=0.015, Ha=1000. Results deviate by more than one order of magnitude and they are 
qualitatively quite different. While Q2D solutions show a more or less smooth velocity field, 
3D simulations predict a low velocity core and thin boundary layers with very high velocity 
along the walls at y=½ and x=½l. However, there is significant disagreement only in layers 
along those walls. This can be seen by a quantitative comparison of axial velocity profiles as 
shown in Figure 3. At some distance from the walls Q2D and 3D results in the core agree 
quite well. Nevertheless, since the layers carry the major mass flux a 3D simulation is 
mandatory and Q2D results are practically useless as can be seen also by a comparison of 
temperature profiles in the middle of the cavity (Figure 3). The flow rate in field aligned 
layers that is missing in the Q2D model can be estimated according to [14] e.g. at the upper 
wall for a cross-section x=constant as 
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Here ∫ dy indicates integration across the layer. For perfectly conducting walls 0w  while 

the potential   at the edge of the layer is given by (13). The vorticity in the core at leading 

order may be estimated from (10) as Gruv yxz   , from which the axial core flow 

rate in the upper half of the cavity results by integration as  
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This simple estimate shows clearly that the error in not-considering the parallel layers in Q2D 
models can be significant. Further 3D simulations with perfectly conducting Hartmann walls 
and insulating field-aligned walls show an additional increase in side layer velocity by another 
order of magnitude so that a comparison with corresponding Q2D results becomes even 
worse.  

 

For walls that are poorly conducting or insulating as in [7] the agreement between Q2D and 
3D improves because the layer flow rate decreases while simultaneously the core flow rate 
increases. Results for a=1, Pr=0.015, Gr=106, Ha=1000, c=0 are shown in Figure 4. For such 
parameters the Q2D model is able to predict the velocity magnitude, i.e. results are not as bad 
as for conducting Hartmann walls. Nevertheless, one can observe still minor differences 
between the Q2D model and 3D simulations.  

 

Figure 2 Colored contours of velocity magnitude in the vertical symmetry plane z=0 obtained by Q2D and 3D 
simulations for a=1, Gr=108, Pr=0.015, Ha=1000, c=∞. 

 

  

Figure 3 Comparison of axial velocity and temperature along y at (x,z)=(0,0) obtained by Q2D and 3D 
simulations for a=1, Pr=0.015, Ha=1000, c=∞. 

  
Figure 4 Comparison of axial velocity and temperature along y at (x,z)=(0,0) obtained by Q2D and 3D 
simulations for a=1, Gr=106, Pr=0.015, Ha=1000, c=0. 
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4. Conclusions 

Q2D models have been often applied in the past as efficient tools for numerical simulations of 
various MHD phenomena for Ha1. It has been shown in the present work that those models 
may have severe deficits for instance because the electric conductivity of field-aligned walls 
is not considered. Moreover, for the derivation of Q2D models it is usually assumed that the 
electric potential is uniform along magnetic field lines, an assumption that is not justified for 
convection problems. A comparison of results with 3D numerical simulations suggests that 
for electrically insulating walls Q2D models give reasonable estimates for velocity and heat 
transfer. For electrically conducting walls, however, Q2D results become useless so that 3D 
simulations are mandatory. 
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