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Abstact: Using the field theoretic RG approach in the two-loop approximation the
influence of helicity (spatial parity violation) on the turbulent magnetic Prandtl number
is studied in the model of the kinematic MHD turbulence, where the magnetic field behaves
as a passive vector quantity advected by the helical turbulent environment given by the
stochastic Navier-Stokes equation. It is shown that the presence of helicity decreases the
value of the turbulent magnetic Prandtl number and that the two-loop helical contribution
to the turbulent magnetic Prandtl number is up to 4.2% of its nonhelical value.

1 Introduction

One of the most important characteristics of the behavior of the magnetic field in a
conductive medium is the magnetic Prandtl number, a dimensionless parameter defined as
the ratio of the kinematic viscosity to the coefficient of the magnetic diffusivity. The ratio
of the turbulent viscosity to the turbulent magnetic diffusivity is the so-called turbulent
magnetic Prandtl number Prm,t [1, 2], which is an analogy to the turbulent Prandtl
number of the thermal diffusion [3, 4] and which obtains a universal value in the limit of
fully developed turbulence.

Theoretical investigations of the phenomena connected with fully developed turbulence
are often based on the renormalization group (RG) methods [4, 5, 6] in the framework of
the field theoretic RG technique which is based on the standard formalism of quantum
field theory. Due to the fact that the field theoretical models of fully developed turbulent
systems belong among the models with strong coupling constants [6, 7], it is also important
to calculate the higher-loop corrections at least to estimate the stability and the relevance
of the one-loop results with respect to the perturbation corrections.

The complete field theoretic two-loop RG analysis of the genuine MHD turbulence
described by the coupled stochastic MHD equations is still missing due to its complex-
ity. Nevertheless, even in this situation the two-loop value of the turbulent magnetic
Prandtl number can be studied and estimated by using the so-called kinematic MHD
turbulence. In the framework of the kinematic MHD turbulence the Lorentz force term
in the corresponding stochastic Navier-Stokes equation is considered negligibly small and
the magnetic field behaves as a kind of passively advected vector field (see, e.g., Ref. [8]).

2 Kinematic MHD turbulence

To describe the passive solenoidal magnetic field in a helical turbulent environment we
use the model of the kinematic MHD turbulence which is given by the following system
of stochastic equations:

∂tb = ν0u0∆b− (v · ∂)b+ (b · ∂)v + fb, (1)

∂tv = ν0∆v − (v · ∂)v − ∂P + fv, (2)



where ν0 is the viscosity coefficient, u0 is the reciprocal magnetic Prandtl number, v ≡
v(x) is an incompressible velocity field, and P ≡ P(x) is the pressure. Both v and b are
divergence-free vector fields, i.e., ∂ · v = ∂ · b = 0.

The quantities fv and fb in Eqs. (1) and (2) are random noises which simulate
the corresponding energy pumping into the system to maintain the steady state of the
dissipative turbulent environment. In what follows, we suppose that the magnetic energy
pumping is given by a transverse Gaussian random noise fb = fb(x) with zero mean and
the correlation function in the form

Db
ij(x; 0) ≡ 〈f b

i (x)f
b
j (0)〉 = δ(t)Cij(|x|/L), (3)

which represents the source of the fluctuations of the magnetic field. The explicit form of
the function Cij in (3) is not essential in what follows, the only condition which must be
satisfied is that Cij decreases rapidly for |x| ≫ L.

The transverse random force per unit mass fv = fv(x) simulates the kinetic energy
pumping into the system on large scales. It has to be chosen in a form suitable for the
description of real infrared energy pumping. In addition, we require the powerlike form
of the energy pumping which enables us to apply the RG technique for investigation of
the problem [5, 6]. Both conditions are satisfied by the following Gaussian statistics of
the random force fv with zero mean and pair correlation function:

Dv
ij(x; 0) ≡ 〈f v

i (x)f
v
j (0)〉 = δ(t)

∫

ddk

(2π)d
D0k

4−d−2ǫRij(k)e
ik·x. (4)

Geometrical properties of the energy pumping are completely controlled by the form
of the transverse projector Rij(k) in (4). In the case of fully symmetric and isotropic
energy pumping it is given by the standard transverse projector

Rij ≡ Pij = δij − kikj/k
2. (5)

On the other hand, in the isotropic but helical case the transverse projector Rij(k) has
the following form

Rij(k) = Pij(k) +Hij(k) = δij − kikj/k
2 + iρεijlkl/k. (6)

Here, εijl is the Levi-Civita completely antisymmetric tensor of rank 3 and the real pa-
rameter, ρ, characterizes the amount of helicity in the system. Due to the requirement
of positive definiteness of the correlation function the absolute value of ρ must be in the
interval |ρ| ∈ [0, 1].

3 Field Theoretic Formulation of the Model

The stochastic problem (1)–(4) can be reformulated into a field theoretic model of the
double set of fields Φ = {v,b,v′,b′} with the action functional in the following form:

S(Φ) =
1

2

∫

dt1 d
dx1 dt2 d

dx2

[

v′i(x1)D
v
ij(x1; x2)v

′

j(x2) + b′i(x1)D
b
ij(x1; x2)b

′

j(x2)
]

+
∫

dt ddx{v′[−∂t + ν0△− (v · ∂)]v + b′[−∂tb+ ν0u0△b− (v · ∂)b+ (b · ∂)v]}, (7)

where xl = (tl,xl), l = 1, 2, v′(x) and b′(x) are auxiliary transverse fields which have the
same tensor properties as fields v(x) and b(x) and required integrations and summations
over dummy indices are assumed.



The field theoretic model (7) corresponds to standard Feynman diagrammatic pertur-
bation theory with a set of bare propagators and vertices. In the present model propaga-
tors have the following form

〈b′ibj〉0 = 〈bib
′

j〉
∗

0 =
Pij(k)

iω + ν0u0k2
, (8)

〈v′ivj〉0 = 〈viv
′

j〉
∗

0 =
Pij(k)

iω + ν0k2
, (9)

〈bibj〉0 =
Cij(k)

| − iω + ν0u0k2|2
, (10)

〈vivj〉0 =
g0ν

3
0k

4−d−2εRij(k)

| − iω + ν0k2|2
. (11)

where Cij(k) is the Fourier transform of function Cij(r/L) in Eq. (3). On the other hand,
the triple (interaction) vertices are b′i(−vj∂jbi + bj∂jvi) and −v′ivj∂jvi.

Let us briefly remind that the formulation of the stochastic problem given by Eqs.
(1)–(4) through the field theoretic model with the action functional (7) allows one to use
the well-defined field theoretic means, e.g., the RG technique, to analyze the problem. At
the same time, the statistical averages of random quantities in the stochastic problem are
replaced with the corresponding functional averages with weight exp S(Φ) (see, e.g., Ref.
[6] for details).

4 The helical magnetic turbulent Prandtl number

The final formulas for the determination of the two-loop inverse turbulent Prandtl number
of passively advected scalar field and for the corresponding inverse turbulent magnetic
Prandtl number in the framework of the kinematic MHD turbulence have completely the
same form [9, 10, 11] and in the language of the kinematic MHD turbulence it reads

ueff = u(1)
∗



1 + ε

{

1 + u
(1)
∗

1 + 2u
(1)
∗

[
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∗
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, (12)

where λ and B(u
(1)
∗ ) are given by the calculation of the corresponding two-loop Feynman

diagrams in our helical and isotropic problem and quantities av and ab(u
(1)
∗ ) are given

by the corresponding expansions to the leading order in ε of the scaling functions of the
response functions 〈vv′〉 and 〈bb′〉 of the velocity field and the magnetic field, respectively
(see Ref. [11] for details). Their numerical values for physically the most important three-
dimensional case (d = 3) are

u(1)
∗

= 1.39297, (13)

λ = −1.0994, (14)

av = −0.047718/(2π2), (15)

ab = −0.041389/(2π2), (16)

B(u(1)
∗
, ρ) = −4.4320× 10−3 − 0.1326× 10−3ρ2, (17)



and the two-loop value of the turbulent magnetic Prandtl number obtains the following
final explicit dependence on the helicity parameter ρ (for the physical value ε = 2)

Prm,t(ρ) ≡ u−1
eff =

1

1.42046 + 0.06229ρ2
. (18)

In the limit ρ → 0 one comes to the nonhelical value Prm,t = 0.7040. On the other hand,
in the fully helical case, i.e., when |ρ| = 1, one has Prm,t = 0.6744. In addition, looking
at Eq. (18), one can conclude that the turbulent magnetic Prandtl number decreases in a
helical turbulent environment, i.e., when the absolute value of the parameter ρ increases.
In (Fig. 1) the dependence of the turbulent magnetic Prandtl number on the helicity
parameter ρ is compared with the analogous dependence of the turbulent Prandtl number
of passively advected scalar quantity.
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Figure 1: The dependence of the turbulent magnetic Prandtl number Prm,t (thick line)
in the model of the kinematic MHD turbulence and of the turbulent Prandtl number Prt
(dashed line) of passively advected scalar field on the helicity parameter ρ.

5 Conclusion

In the present paper we have investigated the turbulent magnetic Prandtl number in
the framework of the kinematic MHD turbulence under the presence of helicity by using
the field theoretic RG technique within the second-order approximation. The explicit
dependence ot the Prm,t on the helicity parameter ρ is found (18).

It was shown that the presence of helicity decreases the value of the turbulent magnetic
Prandtl number up to 4.2%, Prm,t = 0.6744 for |ρ| = 1, in comparison to its value in
the nonhelical system, Prm,t = 0.7040 for |ρ| = 0. The fact that the Prm,t decreases as a
function of the absolute value of the helicity parameter also means that the coefficient of
turbulent magnetic diffusivity increases as a function of the helicity parameter.

Furthermore we have compared the turbulent magnetic Prandtl number in the helical
MHD turbulence to the corresponding turbulent Prandtl number in the model of the



passively advected scalar field. In (Fig. 1) one can see that Prt and Prm,t have the same
values in the fully symmetric isotropic turbulent environments but are different in the
helical systems, i.e., in the systems with spatial parity violation (helicity). It means
that the helical turbulent environment distinguishes the internal tensor properties of the
advected fields.

The fact that both Prandtl numbers, namely, the turbulent Prandtl number and the
turbulent magnetic Prandtl number, decrease as functions of the helicity parameter also
means that the corresponding diffusion coefficients increase in helical environments. At
the same time, the turbulent diffusion coefficients of scalar fields (temperature field or
impurity concentration field) are much more sensitive to the presence of helicity in the
system; i.e., their values are essentially more strongly influenced by the helicity than the
coefficient of turbulent magnetic diffusivity of the magnetic field in the kinematic MHD
turbulence. Therefore, we can conclude that the properties of diffusion processes in the
helical turbulent environments can considerably depend on the internal (tensor) properties
of the advected fields.
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