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Abstract

A linear stability investigation of rotating magnetoconvection between
two differentially heated horizontal planes in a transverse uniform mag-
netic field at low Ekman number is presented. This study was conducted
for Elsasser number Λ (ratio of the Lorentz force to the Coriolis force)
from 10−3 to 1 and Ekman number E from 10−9 to 10−2. Scalings for
the critical Rayleigh number and wavenumber at the onset of magneto-
convection were found.

1 Introduction

This work is motivated by applications to the flow in the region of the Earth liquid
core magnetoconvection (known as the tangent cylinder). This region seems to play
a great role in the structure of the magnetic field and its north pole drift. The main
part of the magnetic field is generated by the Earth core liquid flow. To gain better
insight on this problem the studies of this flow have relied mostly on DNS [2, 11, 12].
These studies are very expensive and difficult due to the low Ekman and Rayleigh
numbers of the order 10−14 and 10−12 respectively in the Earth core [7]. In order to
get closer to more Earthlike regimes, we implemented a linear stability approach.
Linear stability is a well known fluids mechanic tool for this kind of problem.
Similar problems were envisaged in the past with different basic state on the profil
temperature or the magnetic field, and negelecting the inertial and viscous terms in
the resolution [3, 4, 10, 6]. These works were conducted for electrically conductive
flow rotating in between planes with temperature gradient and horizontal magnetic
field. Therefore these configurations are more likely to correspond to the convection
outside the tangent cylinder than inside it. We propose here a different kind of
basic state closer to tangent cylinder conditions following B. Sreenivasan & C.
A. Jones. [11] and Chandrasekhar [5] before them. We found scalings for the
different modes of convection. We implemented a new model taking into account
the variation of conductivity and thermal diffusivity along the vertical axis. This
new linear stablity model was compared with the Chandrasekhar’s one [5] for
Ekman number E = 10−9 and following the phenomenological laws for the Earth
core put forward by Pozzo et al. [9].

2 Implemented models and results

2.1 Governing equations and geometry

We consider an incompressible fluid (viscosity ν, thermal diffusivity κ, magnetic
diffusivity η, density ρ, expansion coefficient α) confined by two differentialy heated
infinite horizontal plane boundaries, separated by a distance d. The temperature
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difference between them is ∆T . The flow rotates at a speed Ω around the vertical
axis z and is subject to a transverse uniform magnetic field B = B0ez. Figure 1
illustrates our geometry.

B

Ω

z

x

y

dT (z = 1/2)

T (z = −1/2)

∆T = T (z = −1/2)− T (z = 1/2) > 0

Figure 1: Schematic illustration of the geometry

The flow is governed by the full incompressible MHD equations under the
Boussinesq approximation, coupled with energy equation [11, 8]. We normalized
lengths by d, the velocity by η

d
, the pressure by ρηΩ, the magnetic field by B0, the

time by d2

η
, the temperature by ∆T , the rotation speed by Ω. The system becomes

controlled by 5 non dimensional parameters: the Ekman number E = ν
Ωd2

, the
Rayleigh number Ra = gα∆Td

ηΩ
, the Elsasser number Λ = B2

µ0ηΩ
, the Prandtl number

Pr = ν
κ
and the magnetic Prandtl number Pm = ν

η
. We applied the two sets of

boundary conditions defined by Chandrasekhar [5]: stress free magnetic (SFM)
and no-slip magnetic (NSM). For both sets of boundary conditions, the system
has a simple solution with u0 = 0, B0 = 0, and T = T0 + z∆T . We are interested
in the linear stability of this basic state. Physical quantities of the problem are
decomposed as g(z) = g0 + ĝ(z)eia.r⊥ , where r⊥ = (x, y) and a is the wave number
because of invariance in the x and y direction. Following B. Sreenivasan and C.
A. Jones [11], we shall only seek the shape of the unstable modes, not their growth
rate. The linear stability problem is then solved in the steady state. Furthermore,
we shall only consider cases where Pm = Pr = 1, under these asumptions, the
linearized system is the same described in [11].

E(D2 − a2)ω̂z + 2Dûz + ΛDĵz = 0, (1)

E(D2 − a2)2ûz − 2Dω̂z + Λ(D2 − a2)Db̂z − 2RaT̂ ′ = 0, (2)

(D2 − a2)b̂z +Dûz = 0, (3)

(D2 − a2)ĵz +Dω̂z = 0, (4)

(D2 − a2)T̂ ′ + ûz = 0, (5)

D symbolizes the derivative along z. ω̂z = ∇× (u).ez, ûz, ĵz, b̂z and T̂ ′ are the
z component complex amplitude of the vorticity, velocity, current, magnetic field,
and temperature perturbations respectively and a =‖ a ‖ is a non dimensional
wave number. Following Chandrasekhar [5] and using mass conservation, boundary
conditions are expressed as (6, 7).

D2ûz = ûz = Dω̂z = ĵz = T̂ ′ = 0 for z = ±1/2, (6)
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Dûz = ûz = ω̂z = ĵz = T̂ ′ = 0 for z = ±1/2 . (7)

The problem becomes a generalized eigenvalue problem of the form AX =
RaBX. The critical Rayleigh number for the onset of convection Rac is found as
an eigenvalue of the problem for any given a and minimized over a as in Chan-
drasekhar [5].

2.2 Resolution

We solved the problem numerically using a spectral collocation method based on
Tchebychev Polynomials. In the no-slip case, a boundary layer of the thickness
δ = 2

√
Eπ develops along the wall, we have ensured that at least 3 collocation

points were in it [1]. The validity of the results was guaranteed by convergence
tests. We observe a quick convergence to the relative error ε over Rac at N = 3000,
the number of collocation points. We made sure that the relative error ε was of
the same order than the numerical precision.

2.3 Results

In figure 2, we illustrate the typical behaviour of the critical Rac with respect to
a. For each case, we note three specific values for Rac. The first is a minimum
occurring at low a, its position and value depends hardly on E but is mostly
controlled by Λ. As such, it is referred to as the magnetic mode that we shall
denote (Ramc , a

m
c ) with Ramc the magnetic critical Rayleigh number and amc the

magnetic critical wave number. The second is a local minimum for relatively
high a, its position and values depend mostly on E. We shall thus refer to it
as the viscous mode (Ravc , a

v
c) where Ravc is the viscous critical Rayleigh number

and avc the viscous critical wave number. The third is a local maximum located
between the two previous modes. We call this maximum the intermediate mode
(Raintc , aintc ). For low E, the value of Raintc is several orders of magnitude higher
than Ravc and Ramc so a clear separation exists between magnetically controlled
modes and those controlled by viscosity.

During the simulations, Λ has been restricted to values below 1 which are
relevant to geophysical problems (regime of the Earth core). For higher values of
the Elsasser number, B. Sreenivasan and C. A. Jones [11] have shown that the
Lorentz force has a stabilizing effect on the flow so that Ramc (Λ) increases instead
of decreasing as it does for Λ < 1. For both types of boundary conditions we
observed the same results. The system can be characterised by two limits, L1

when the intermediate and the magnetic mode overlap, Ramc = Raintc , and L2 when
the most unstable mode switches from magnetic to viscous control, Ramc = Ravc . In
the limit of E → 0 and Λ → 0, we found that L1 behaves as Λ ∝ E−1 and L2 as
Λ ∝ E−1/3. The behaviour of L1 is a new result highlighting the transition from a
viscous only control system to a magnetic and viscous control system. The scaling
for L2 shows when the magnetic mode becomes more unstable than the viscous
mode. This second result respects the scaling found by Chandrasekhar [5] about
the viscous mode.

Using the same notation, boundary conditions, and logic, we obtained a linear
stability model with variable electrical conductivity and thermal diffusivity along
z. This model appears as:

E(D2 − a2)ω̂z + 2Dûz + σ(z)Λ0Dĵz = 0, (8)
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Figure 2: Variation of Rac with a. The blue curve’s input parameters are E = 10−8 and Λ = 1. The
red curves’ input parameters are E = 10−8 and Λ = 10−1 to 10−3. The green curves’ input parameters
are E = 10−5 to 10−7 at Λ = 1.

E(D2−a2)2ûz−2Dω̂z+Λ(σ′(z)−B0σ(z)D)(D2−a2)b̂z−Raa2(σ(z)+Teq(z)σ′(z))T̂ ′ = 0,
(9)

1

σ(z)
(D2 − a2)b̂z +B0Dûz = 0, (10)

1

σ(z)
(D2 − a2)ĵz +B0Dω̂z + (

1

σ(z)
)′Dĵz = 0, (11)

σ(z)κ(z)(D2 − a2)T̂ ′ + ûz = 0, (12)

where σ(z), κ(z) and Teq(z) are linear functions along z based on the values given
by Pozzo et al. [9] at the basic state. We solve this new set of equations as we did
for the previous one.

Figure 3 presents the difference in between the new model (with variable κ and
ν) and the classic model (uniform basic state). In both cases, the results were
obtained with SFM boundary conditions, E = 10−9, Λ = 1, and a = [1, 2200] as
input parameters. The new system appears to be generally more unstable. The
three modes of interest are pushed to lower values of Rac.

3 Discussion

In this paper, the scalings on the different modes for convections were found in the
case of the classic model. Asymptotic regimes were reached in the limit of E → 0.
For both boundary conditions the behaviour is similar, we only observed a faster
convergence to asymptotic regime for SFM in the limit of E → 0. This result
is of importance because it suggests that DNS pursued at E of order 10−7 with
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Figure 3: Comparaison in between the two models

SFM provide very accurate insight on the flow inside the tangent cylinder. A new
model was implemented showing that variable thermal diffusivity and electrical
conductivity generated a more unstable system.
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