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Abstract: Fundamental features of mixed convection are investigated for upward and 
downward flows in long vertical ducts with one heated wall and strong imposed transverse 
magnetic field. It is found that the Q2D model accurate for the upward flow, but not always 
accurate for the downward one. Another feature of the downward flow is the exponentially 
growing streamwise-uniform elevator modes. Finally, the flows are prone to Kelvin-
Helmholtz instabilities associated with inflection points of streamwise velocity profiles. 
 
1. Introduction 
 
This paper presents the first results of our computational study of mixed (combined natural 
and forced) convection in MHD flows of liquid metals in vertical ducts. Ducts of square 
cross-section with electrically insulated walls are considered. Three of the walls are thermally 
insulated, while the fourth wall is subject to constant-rate heating. A uniform steady-state 
magnetic field is imposed in the direction perpendicular to the flow and to the direction of the 
temperature gradient established by the wall heating. The focus of the study is on situations 
with strong heating and magnetic field (large values of Grashof and Hartmann numbers). The 
cases of upward and downward flows are considered. The study is relevant to the liquid metal 
blankets of fusion reactors, more specifically, to the blankets with long poloidal channels, in 
which electrical and thermal insulation of the walls is applied [1]. The system is simplified by 
assuming a fully developed flow, perfect electrical and thermal insulation of the walls, and 
constant physical properties of the liquid, as well as by replacing the volumetric heating near 
the first wall by the wall heating. At the same time, no a-priori assumptions about the flow’s 
dimensionality and time-dependency are made. The computational model permits 
development of 3D and time-dependent structures. The study can be characterized as a 
theoretical analysis of basic features of convection in vertical ducts with strong transverse 
magnetic field. 

Despite their evident importance for the operation of liquid metal blankets, the effects 
of natural and mixed convection in the presence of strong magnetic fields are still poorly 
understood. The only earlier computational work directly addressing the configuration of this 
paper is [2], where quasi-2D modeling was employed to study convection instabilities in 
upward flows in long vertical ducts. Instabilities of two types (the Kelvin-Helmholtz type 
associated with inflection points in the streamwise velocity profile and the boundary layer 
type) were found, both leading to oscillations of velocity and temperature fields. These results 
are consistent with the measurements [3] that showed high-amplitude oscillations of 
temperature in mercury flows in vertical pipes. We note that the effect of convection-
generated oscillations is not limited to flows in vertical tubes. It is a general phenomenon 
likely to occur in tubes of almost all orientations. For example, the computational and 
experimental analysis of flows in horizontal pipes [4,5] and ducts [6] with bottom heating 
show that a sufficiently strong transverse horizontal magnetic field results in the convection 
instability in the form of growing rolls aligned with the field and transported by the main 
flow.  
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2. Theoretical and numerical model 
 
We consider a flow of an incompressible, Newtonian, electrically conducting fluid (a liquid 
metal) in a vertical duct of square cross-section. Heating of constant uniform rate q is applied 
to one of the walls. Constant magnetic field B oriented perpendicularly to the duct and to the 
direction of the heating-induced temperature gradient is imposed in the entire flow domain. 
The flow with the mean velocity U directed either upwards or downwards is driven by an 
applied pressure gradient . Using U as the velocity scale, the duct’s half-width d as the 

length scale, , where  is the thermal conductivity, as the temperature scale, and the  B-
derived scales for the electromagnetic fields, we can write the non-dimensional equations as 

,  (1) 

      (2) 
In the equations and the following discussion, the coordinates x,y,z are, respectively, in the 
streamwise direction, direction of the magnetic field, and direction orthogonal to the heated 

wall. The pressure field is the sum of (x) with spatially uniform gradient  adjusted at 
every time step to maintain constant mean velocity and fluctuation . The temperature 

field T is the sum of the mean-mixed temperature  and 
fluctuations . The buoyancy force is computed using the Boussinesq approximation as 

. Here, we assume that the buoyancy due to the mean-mixed temperature 
is fully balanced by a vertical pressure gradient and use the coefficient α to account for the 
two possible flow directions: α=1 in upward flow (x facing upwards) and α=-1 in downward 
flow (x facing downwards). The Lorentz force is , where the current 
density is determined by the Ohm’s law  and the electric potential is a 
solution of the Poisson equation . The non-dimensional parameters are the 

Reynolds number , Hartmann number , Peclet number 

, and Grashof number . The boundary conditions at the walls 

are: u=0, ,  at the thermally insulated walls, and at the 
heated wall. Inlet-exit periodicity of ϑ, p, u and  is assumed. 

We use a version of the finite difference model introduced in [7] and later adapted to 
flows with mixed convection in [4,6]. The method uses the second-order time discretization, 
in which viscous and conductive terms are treated implicitly and the incompressibility is 
satisfied by the standard projection algorithm (see, e.g. [8]). The spatial discretization is of the 
second order on a structured collocated grid with points clustered near the walls via the tanh 
coordinate transformation (see [6,7] and the discussion of various clustering schemes applied 
to the MHD convection in [9]). The discretization uses fluxes of velocity and electric current 
interpolated to half-integer points. In the non-viscous, non-conductive limit, it exactly 
conserves mass, momentum, electric charge, and internal energy, while kinetic energy is 
conserved with the dissipative error of the 3rd order.  

In the computations, we keep constant Re=5000 and Pr=0.0321, while Ha and Gr vary 
in broad ranges. The computational domain is a duct of 2x2 cross-section and sufficient 
streamwise length. The computational grids are tested in a thorough sensitivity analysis so 
that the smallest grids providing accurate solutions are determined (see [6,9] for details). Such 
grids typically have about 7 points within each Hartmann boundary layer and 10-12 points 



within each Shercliff (sidewall) boundary layer. 
 
3. Results 

.1 Analytical Q2D solutions in comparison with computations. In high-Ha flows of 
 
3
certain geometries, one can apply the Q2D model [10], in which the flow fields are averaged 
wall-to-wall in the magnetic field direction and the electromagnetic effects are reduced to 
linear friction at the Hartmann walls. The model can be applied in our case, where the 
averaging is in the y-direction. We do that for the streamwise-uniform steady-state flows: 

 .     (3) 
Such solutions always exist in our system. As discussed below

e just assumed state of the flow, we derive: 

, they can be stable or unstable 
depending on the values of Ha and Gr. 
Applying the Q2D approximation and th

      (4) 
,  

where 

  (5) 

 are the y-averaged fields, and  and . The system can be reduced to a 
ry diffe

resented in Fig. 1, where the analytically found profiles 

boundary-value problem for a 4th-order ordina rential equation with constant 
coefficients and solved analytically (a similar solution for the case of internal heating is 
available in [2]).  
00The results are p  are compared 
with the computed solutions of the full problem. In order to obtain the streamwise-uniform 
numerical solutions, we apply x-
averaging at every time step and 
compute the evolution of the flow 
until convergence to a steady state is 
achieved. After that, the computed 
profiles ,  are averaged 
in y. We Fi hat in the case 
of the upward flow the agreement 
between the Q2D and full solutions is 
very good. This has been found in all 
our computations conducted at Ha=50, 
100, 200, 400, 800 and Gr=10

 see in g. 1a t

6, 107, 
108, 109. Quite different results are 
obtained for the downward flows. 
Here, the Q2D model allows us to 
accurately calculate  and  only at 
low Gr. At high Gr, a illustrated in 
Figs. 1c,d, the Q2D solutions are 
inaccurate or even unphysical. The 
upper boundary of the interval of 
acceptable accuracy increases with 
Ha, but even at Ha=400 and 800, high 
values of Gr render the Q2D model inac
 

s 

Figure 1: Comparison between analytical Q2D (dashed lines) 
and computed (solid lines) solutions for streamwise-uniform 

steady-state flows. (a) – upward flow, (b)-(d) – downward flow. 
Heated wall is at z =-1. 

curate.  
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3.2 Elevator modes in downward flows. In the case of downward flow, solutions of type (3) 

ld not be computed at high values of Gr. Instead of converging to steady states, the cou
calculated fields demonstrated exponential growth as in: 

. (6) 
Substituting (6) into the governing equations, we obtain the eigenvalue problem, the 
mathematical solution of which is yet to be found. From the physical viewpoint, existence of 
(6) is not surprising. In the downward flow, the balance between wall heating and streamwise 
convective transport results in the mean-mixed temperature  increasing downwards, i.e. 
unstable stratification. In the absence of top and bottom boundaries, unstably stratified 
systems are known to have exponentially growing vertically uniform solutions called the 
‘elevator modes’ (see, e.g. [11]). Under normal circumstances, such solutions are not 
observed, since the growing upward and downward jets typically present in them quickly 
become unstable and succumb to turbulence. In MHD flows, however, a sufficiently strong 
magnetic field stabilizes the jets and make the elevator modes actually realized numerical 
solutions. This was demonstrated in the periodic box computations [12], where, to our 
knowledge, the elevator modes were first identified and described. 

It is hard to say how relevant the solutions (6) to the processes in channels of liquid 
metal blankets. The top and bottom boundaries of a channel would make the clear-cut elevator 
modes 

e-uniform 
olutions (3) could be obtained we conducted their stability analysis. This was done using a 

impossible. At the same time, we may hypothesize that in a long channel the unstable 
stratification cause strong upward and downward jets. The jets, possibly, grow to large 
amplitudes and break down to inflection point instabilities creating sporadic turbulence-like 
bursts of velocity and temperature fluctuations. This scenario and its role as an explanation of 
strong temperature fluctuations observed in [4] will be explored in our future work. 
 
3.3 Stability analysis and DNS. For the cases, where the steady-state streamwis
s
modification of the 3D DNS method, in which we followed the evolution of small-amplitude 
perturbations added to (3) and restricted to a given streamwise wavelength  using FFT 
filtering (see [4,6] for details of the method). We have found that, with exception of flows at 
Gr=106, the solutions (3) are unstable in wide ranges of  for both upward and downward 
flows. The instability modes are the typical Kelvin-Helmholtz rolls oriented along the 
magnetic field lines and associated with inflection points in the base flow profiles. Similar 
modes are found in the Q2D analysis of the upward flow [2]. 
The flow regimes arising from the instabilities were investigated in DNS. The computational 
domains sufficiently long to include all or nearly all the unstable modes were used. Typical 

Figure 2: 3D DNS of upward flow at Ha=200, Gr=10
7
. Instantaneous distributions of transverse velocity component 

uz and temperature θ in fully developed flow are shown for the mid-plane normal to the magnetic field. 

results are illustrated in Fig. 2. 
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