

European Programme for Life and Physical Sciences (ELIPS)

• Now : ELIPS 3

- Physical Sciences Research in Space
 - Physical Sciences Unit : *Head* Olivier Minster
 - New Materials and Energy Unit : David Jarvis

• MISSION STATEMENT

• Conceive a research programme in space that has an impact commensurate with the investments it represents in terms of instrumentation, launch and in-orbit operations

• STRATEGY

- Involve a large international team of theorists, modellers, experimentalists and communicators in every project
- Embed space projects into larger ground-based, application-oriented projects as typically funded by the EC

European Programme for Life and Physical Sciences (ELIPS)

- ESA implements the joint efforts of 20 Member States
 - 18 states of the EU: AT, BE, CZ, DE, DK, ES, FI, FR, IT, GR, IE, LU, NL, PT, PO, RO, SE, UK
 - plus Norway and Switzerland.
- The members states that contribute to the optional ELIPS programme are in red
- Other EU states have Cooperation Agreements with ESA: Estonia, Slovenia, Hungary, Cyprus, Latvia, Lithuania and the Slovak Republic (Bulgaria and Malta coming up) anticipating full membership.
- Canada takes part in some programmes under a Cooperation Agreement (and this includes ELIPS)

MEANS "AVAILABLE" FOR IMPLEMENTATION

Ground-based Facilities 4.7 - 9 s

Sounding Rockets up to 13 min

Columbus Modulus

ISS-Columbus modulus

Material Science Laboratory Electromagnetic Levitator (MSL-EML)

APPLICATION-ORIENTED RESEARCH

• When Europe decided to join the ISS project, ESA was asked to identify all potential applications for its utilisation and seek a return on investment.

=> "Research needs not be useless to be fundamental"

- MAP: Microgravity Applications Programme
 - Stimulate the involvement of non-space industry in ELIPS projects
 - gravity effects
 - Cetsol/Micast MAP
 - Thermolab MAP
- These actions demonstrate the potential, but the impact is not commensurate with the investment in space.

ELIPS-2 Research Cornerstones in Physical Sciences

• FUNDAMENTAL PHYSICS

- Cold Atom Clocks, Matter Waves, Bose-Einstein Condensates & Quanta
- Physics of Plasmas and Solid or Liquid Particulates

• FLUID PHYSICS

- Structure and dynamics of fluids, multi-phase systems and interfaces
- Combustion

• MATERIALS SCIENCES

- Materials designed from Fluids
- Thermophysical properties of Fluids for Advanced Processes

• PREPARATION FOR EXPLORATION

- Life Support Systems
- Advanced materials, Fire safety

21st Century Materials

MATERIAL TOPICS UNDER STUDY: lightweight transportation, energy and propulsion systems, catalysis, heat transfer devices, nuclear reactors, superconducting wires, energyharvesting of waste heat, solar thermal collectors, high-speed computing, high-density digital storage, telecom...

Filling a mould

13

Challenge in alloys solidification

understanding the CRITICAL LINK between Process - Structure - Properties

Thermophysical properties ? Which issues ?

Elaboration - Process optimisation

Numerical Simulations

Thermophysical properties

???

• Issues : - high temperature - pollution

(Courtesy of Astrium)

Development of containerless technique in microgravity use of EM levitation

EML-MSL: Tempus

- Sample heating possible up to 2000degC
- Pyrometer (resolution 0.1K >600degC, 100Hz)
- 2 cameras (axial, radial high speed) (high speed up to 190kHz)

16

- Vacuum and inert gas (Ar, He or mixture)
- Trigger needle and chill cooling capability
- Sample container for 18 samples
- Crew activity only for container exchange

Induction Principle

• induced electrical currents

$$j \approx \frac{2|B_s|}{\mu\delta} \cdot e^{n/\delta_m} \cdot \cos\left(\omega t + \frac{n}{\delta} + \frac{\pi}{2}\right)$$

• Joule Power => sample heating

• Electromagnetic forces => levitation => centering => stirring

EML-MSL Modulus

EML-MSL Modulus

Mesurements:

- Interface (video) :
 - oscillation frequency
 - volume mesure
- Temperatures (pyrometry)
- Electrical current and frequencies of the electrical circuit

EML-MSL Modulus

EML-MSL Density Measurement

Optical Dilatometry

Follow on a video the interface varying temperature

Volume calculation

EML-MSL Overheat Measurement

Input : Joule Power

Output : temperature

Deducing : overheat

Elect. conductivity measurement

Measure : resonnance frequency of the RLC electrical circuit.

Calculation : electrical conductivity

Surface tension and viscosity

Input : Droplet deformation
Measure : time depending top point position

Calculation : surface tension and viscosity

Heat capacity and thermal conduction

Input : Modulation of the Joule Power Heating

Measure : temperature

Calculation : heat capacity and thermal diffusivity

Solidification structures

Use of a needle

Measure : X-ray + video + image processing

Video Hyers et Wunderlich (2003)

QUESTION

• Does the motion inside the molten sample disturbs the measure ?

Surface tension and viscosity measurements

Laser signal - appropriate filter - modelled and analyzed as <u>damped oscillator</u>

Surface tension and viscosity measurements

Damped harmonic oscillator Model assumptions

- 1 spherical equilibrium shape of the droplet
- 2 small shape deviation from the sphere
- 3 potential flow inside the droplet

 4 - no other flow source than the motion generated by the deformation of the equilibrium spherical shape

 \Rightarrow no electromagnetic stirring

 \Rightarrow no previous existing motions

Used method for turbulence model

• We choose a k-& RNG model

 adapted to intermediate case where the turbulence is <u>not fully</u> <u>developed</u>

V. Yakhot and S.A. Orszag, *Renormalization Group Analysis of Turbulence. I. Basic Theory*, J. Sci. Comput. 1 (1) (1986) 3-51.

Results

Stationary flow

- Results similar to Hyers-2005
- 2 counter vortices
- Weak effect of the Positioner
 - 5% of the Joule Power in the sample
 - fluid flows are weakly different.
- Measured temperature well recovered for $\epsilon=0.52$
- $\Delta \langle \mu_{turb} \rangle / \mu_o \approx 10$
- Convection leads to equatorial temperature slightly lower than polar temperature

Non stationary calculations

UH t=391.02s	UH t=391.76 s
154 V	18 V
UP	UP
t=391.02s	t=391.31s
120 V	84 V
$\Delta t(H) = 0,74 s$	
$\Delta t(P)=0,29 s$	

Experimental voltages

Non stationary calculations

UH t=391.02s	UH t=391.76 s
154 V	18 V
UP	UP
t=391.02s	t=391.31s
120 V	84 V
$\Delta t(H)=0,74 s$	
$\Delta t(P)=0,29 s$	

Experimental voltages

36

Non stationnary calculations

Non stationary mean velocity

Non-contact calorimetry

Modulated calorimetry $-\omega_{o}$ optimal

Current Model (Fecht & Johnson – 1993)

• Biot number

$$Bi = h_{ext} / h_{int}$$

• Decay time

 I/Λ_{ext}

Sketch of the alternative experimental facility

Helmholtz DC 5T coil

EML located inside the DC coil.

Alternative experimental facility

• DC Magnetic field to damp motions

• To reach better thermo-physical properties on earth

Acknowledgement

- At the beginning of the presentation, some slides are taken from Olivier Minster
- The presentation of the EML is taken from Astrium
- This work has been funded by the followings supports
 - ESA under MAP-Thermolab,
 - EC under PI-IMPRESS (Contract Number: NMP3-CT-2004-500635),
 - CNES under Material Sciences Program.