





#### SPACE TRIPS SUMMER SCHOOL



Riga Latvia June 17-20 2014











HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF





### Outline

# **1. Electric Propulsion & Hall Thrusters**

- Electric propulsion
- Principle of Hall Effect Thrusters

# 2. Research on Hall thrusters

- Simulation and plasma diagnotics
- Physics and technical issues
- Examples of recent achievements in France

# 3. Conclusion



Total velocity increment  $\Delta v$  required for a given mission or manoeuvre is an indication of the energetic difficulty of that mission or operation



$$\frac{d\left[m\mathbf{v}\right]}{dt} = 0$$





Integration of this equation gives the propellant mass needed for a given velocity increment (i.e. for a given mission)



Space Trips Summer School, Riga, June 17-20 2014

- Electric propulsion can provide large exhaust velocity of the propellant (acceleration of the propellant by electric force) but generally with small thrust
   adapted to satellite station keeping or interplanetary missions
- Chemical propulsion provides small exhaust velocity (thermal expansion of the propellant) but large thrust is possible
  - $\rightarrow$  adapted to fast orbit transfer

- Specific Impulse is a measure of the propellant velocity
- **Thrust** is a measure of the force exerted on the satellite







#### Electric Propulsion and Hall Thrusters Propellant mass consumption

$$m\frac{d\mathbf{v}}{dt} = -\mathbf{v}_e \frac{dm}{dt}$$

Integration over the whole duration of the mission

$$\frac{m_D}{m_0} = \exp\left[-\frac{\Delta v}{v_e}\right]$$

 $m_D$  = delivered mass  $m_0$  = initial mass = delivered mass + propellant mass =  $m_D$  +  $m_P$  $\Delta v$  = total velocity increment needed for the mission

$$\frac{m_D}{m_D + m_P} = \exp\left[-\frac{\Delta v}{v_e}\right]$$

$$\frac{m_P}{m_D} = \exp\left[\frac{\Delta v}{v_e}\right] - 1$$

For a given total velocity increment of the vehicle, propellant mass consumption is smaller for larger propellant exhaust velocity





- Propellant mass consumption decreases exponentially with propellant exhaust velocity
- High propellant velocity can be reached with electric thrusters
- Electric propulsion saves more than 800 kg of propellant to keep a 3 tons satellite on geo orbit
- → Cost reduction of millions of Euros



## Electrothermal

Gas heating + expansion Arc Jet, resistojet, microwave



## Electromagnetic (MPD, MagnetoPlasmaDynamic)

Plasma acceleration by Lorentz force + expansion Pulsed Plasma Thruster Lorentz Force Accelerator



# Electrostatic (Ion thrusters)

Plasma source + ion extraction Gridded ion thruster Field Emission Electric Thruster





## Electrothermal

Gas heating + expansion Arc Jet, resistojet, microwave

## Electromagnetic (MPD, MagnetoPlasmaDynamic)

Plasma acceleration by Lorentz force + expansion Pulsed Plasma Thruster Lorentz Force Accelerator

# Electrostatic (Ion thrusters)

Plasma source + ion extraction Gridded ion thruster Field Emission Electric Thruster

#### 8

#### Hall Effect Thruster →









- Plasma = ionized gas
- Contains gas molecules, free electrons and positive ions with densities  $n_g$ ,  $n_e$  and  $n_i$
- In a plasma  $n_e$  and  $n_i$  must be sufficiently large to have **quasi-neutrality**  $n=n_e \sim n_i$ (non-neutrality generate electric fields and forces that keep negative and positive charges together)
- If plasma density n is large enough plasma can be a good conductor
  - → Plasma tends to be equipotential (low electric field in plasma)
- Plasma is sustained by ionization by electron impact of the molecules
- Ionization must be sufficient to compensate for the charged particle losses (eg to the walls)
- To increase ionization electron energy must be increased
- Electron energy is increased by applying external field (DC, AC, microwave, etc...)
- At very low pressure, eg 1 Pa, the electron mean free path (distance between collisions with the molecules) can be larger than the dimensions of the plasma source
  - → Ionization of the molecules is difficult (no collisions)
  - → Magnetic field generally used to confine the electrons at low pressure



#### **Electric Propulsion and Hall Thrusters** Gridded Ion Sources

**Gridded Ion Thruster** hollow cathode neutralizer gas anode B +hollow Ion+ cathode (+)lons are extracted from the plasma and accelerated out by a system of biased grids (+)ring magnet anode accelerator grid ////// Negative high voltage cathode : hot filament or hollow cathode Ring cusp configuration magnetic confinement ~100 V between cathode and anode



Space Trips Summer School, Riga, June 17-20 2014

#### Electric Propulsion and Hall Thrusters Gridded Ion Sources



# 

## Examples of gridded ion thruster

- NSTAR: used on the NASA Deep Space 1 mission (1998) 30 cm diameter, P=2.3 kW, Isp=3100 s, T=20-90 mN
- NEXT: NASA Evolutionary Xenon Thruster
  40 cm diameter, P=1-6 kW, Isp=2000-4000 s, T=50-240 mN



NASAUPL/Caled





## Gridded ion source

- Space charge limited current density (Child Langmuir) Large thrust → large thruster area
- Sputtering limits the life time of the grids

#### Gridless ion source – Hall Thruster

- Large electric field generated in the plasma
- How to create large electric field in the plasma ?
- Decrease electron conductivity locally  $|_{E} =$
- Can be done by perpendicular magnetic field
  « magnetic field barrier »
- No limitation on current density





 $\sigma$ 



- Magnetic barrier between cathode and anode in a plasma source
- Perpendicular to electron flow from cathode to anode
- Increase electron residence time and ionization
- Ions are ~ not magnetized (not sensitive to magnetic field because of large mass)



- Electron drift // to E is considerably reduced
- Electron drift in the *E* × *B* direction with large velocity (Hall current)



- Magnetic barrier between cathode and anode in a plasma source
- Perpendicular to electron flow from cathode to anode
- Increase electron residence time and ionization
- Ions are ~ not magnetized (not sensitive to magnetic field because of large mass)



- Electron drift // to E is considerably reduced
- Electron drift in the *E* × *B* direction with large velocity (Hall current)

 $E \times B$  drift velocity:  $v_{E \times B} = E/B$ E drift velocity:  $v_E = E/B \nu/\omega$ 

> v electron collision frequency ω electron cyclotron frequency = eB/mv/ω can be ~ 10<sup>-3</sup> in a Hall thruster



- Magnetic barrier between cathode and anode
- Perpendicular to electron flow from cathode to anode
- Increase electron residence time and ionization
- Ions are ~ not magnetized (not sensitive to magnetic field because of large mass)



 $E \times B$  drift velocity:  $v_{E \times B} = E/B$ E drift velocity:  $v_E = E/B \nu/\omega$ 

- Because of electron flux in the *E* × *B* direction, there should be no walls in this direction
- $\rightarrow$  Closed drift geometry (i.e. cylindrical with  $E \times B$  in the azimutal direction )
- → Hall thrusters





- High Thrust Efficiency > 50 %
- High propellant velocity ~20 km/s
- Thrust to Power Ratio ~ 70 mN/kW

 $E \times B$  drift in the azimutal direction







- High Thrust Efficiency > 50 %
- High propellant velocity ~20 km/s
- Thrust to Power Ratio ~ 70 mN/kW

 $E \times B$  drift in the azimutal direction



#### **European lunar probe SMART 1**





#### **Principles**

- Radial magnetic field B
- Axial electric field E
- $E \times B$  drift in the azimutal direction

Existence of large electric field in the plasma because of low electron conductivity in the magnetic barrier:

$$J = \sigma E$$

If conductivity  $\sigma$  is low, electric field  $E=J/\sigma$  must increase for a given current





#### **Principles**

- Mean free paths >> dimensions
- Large radial B field at exhaust (2 10<sup>-2</sup> T)
- $\rightarrow$  increase residence time of electrons
- → Magnetized, collisional electrons
- Unmagnetized, Collisionless ions
- Neutral flow ~ fully ionized (80-90%)

## **Typical numbers**

- Voltage 300 V, current 4 A
- Xenon mass flow rate 5 mg/s
- Typical dimensions  $\phi$  10 cm, L 3 cm
- gas density at anode 10<sup>13-14</sup> cm<sup>-3</sup>
- Plasma density 10<sup>12</sup> cm<sup>-3</sup>
  - Electron temperature 15 eV



#### $E \times B$ configuration $\rightarrow$ Hall (azimutal) current $\sim 20$ A, larger than the discharge current $\sim 4$ A



#### Two ways to describe thrust

- Electric force acting on ions and due to the large electric field generated by the decrease of electron conductivity
- Lorentz force acting on the Hall current







Space Trips Summer School, Riga, June 17-20 2014

#### **Research on Hall thrusters** Typical plasma properties from 2D Hybrid model



Hybrid model: fluid description of electrons, kinetic descritpion of ions



Laplace

Classical, collisional transport – Axial and azimutal velocity



Laplace

# In classical theory electron current is proportional to electron-neutral collision frequency, i.e. to gas density

$$v_E = \frac{E}{B} \frac{v}{\omega}$$
 electron current density  $J_e = en_e v_E = en_e \frac{E}{B} \frac{v}{\omega}$ 

## Problem

- experiments and models show that classical conductivity is not sufficient to explain observations
- i.e. current density due to collisions between electrons and neutral gas is too low



#### Neutral atom density



- Because of ionization, neutral density is depleted in the exhaust region
  - Collisions with neutral atoms not sufficient to allow transport  $\perp$  B (especially outside the channel)
- Necessary to introduce supplementary scattering effects in hybrid models (« anomalous mobility »)
  - Collisions with walls and secondary emission (« near wall conductivity »)
  - Turbulent transport

Adam et al. Plasma Physics and Controlled Fusion 50 124041 (2008)





Research efforts to understand and quantify electron transport across magnetic field

- Particle In Cell simulation of turbulence
- Possible to deduce turbulent transport coefficients for fluid models ?
- Plasma diagnostics to measure plasma properties and quantify turbulence: Laser diagnostics (Laser Induced Fluorescence, Collective Thomson Scatering)
- Because of anomalous transport, the models are still not able to help efficiently the design of new Hall thrusters (larger power or different designs):

Hall thruster design is still empirical

Adam et al. Plasma Physics and Controlled Fusion 50 124041 (2008)





- Magnetic field lines tend to be equipotential
- Electric field and ion trajectories ~ perpendicular to magnetic field lines
- Magnetic field configuration plays an important role on ion divergence and wall erosion

#### wall erosion



Magnetic shielding configuration proposed by JPL to minimize wall erosion and increase lifetime



#### Hofer et al, IEPC-2013-033



- Better understand and quantify electron transport across magnetic field to build predictive simulation tools than can help the design of Hall thrusters
  - understand role of instabilities and turbulence on transport
  - understand role of electron interaction with walls on transport
- Understand the role of magnetic field distribution
  - on instabilities, turbulence and electron transport
  - on ion beam distribution and divergence wall erosion lifetime
- Improve materials
  - Development of new ceramic materials to increase lifetime
- Investigation of plasma surface interaction (eg secondary electron emission)
- Improve cathode (electron source)

#### **PPS FLEX**

(French research group on electric propulsion)

- Design of a Hall thruster with Flexible magnetic field configuration: PPS FLEX
- Possible to test multiple magnetic field configurations on a single thruster
- Possible to change each parameter independently (eg B gradient) to understand the role of each parameter on the thruster performance





#### Hénaux et al, IEPC-2011-291



**PPS FLEX** 

(French research group on electric propulsion)

- Complex system of independant coils and magnetic circuit
- 8 degrees of freedom





PPS-20k ML

(French research group on electric propulsion)





# Hall effect thruster PPS-20k ML operating at 23.5 kW, developed in the frame of the FP7 HiPER



Space Trips Summer School, Riga, June 17-20 2014

(French research group on electric propulsion)

Evidence of the presence of azimutal instabilities (microturbulence) enhancing electron transport across the magnetic field by Particle-In-Cell simulations



- Measure of density fluctuations and turbulence by Collective Thomson Scattering
- Laser Induced Flurence measurements of ion velocity distribution function



Space Trips Summer School, Riga, June 17-20 2014

## **Need for more versatile Hall thrusters**

- In a Hall thruster the same electric field is used to energize the electrons (allowing ionization) and to accelerate the ions
- ionization and acceleration are strongly linked so it is difficult to fix separately the power (thrust) and the ion velocity (lsp)

### > Need for versatile thrusters with variable lsp and thrust

- orbit top up orbit raising
  - high thrust (reduction of mission duration)
  - high mass flow rate/low voltage (enhance ionization)
- North/South Station Keeping
  - high lsp to minimise gas consumption
  - high voltage/low mass flow rate to enhance acceleration

## $\rightarrow$ Double Stage Hall Thruster (DSHT)

- Separation of ionization and acceleration processes
- promising candidate for multi-mode operation







### Conclusion

- **1.** Interest in all-electric propulsion is increasing fast
- 2. EP will be used on all telecommunication satellites not only for station keeping but also for orbit raising
- **3.** Hall thrusters are excellent candidates for EP and are already used on satellites Still need for Research and Development
- 4. Principles of Hall thrusters are relatively simple but physics is quite complex
  - Electron transport across magnetic field
  - Role of plasma-wall interactions
  - Design is stil empirical
  - Important progress made in the last years on physics and technical issues

