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Introduction 

Load	

Closed 
 end	

Resonator	

Heater	

Cooler	

Example of an entire thermoacoustic device:  
standing wave thermoacoustic engine / variable load 

(demonstrator by Hekyom society - France),  

  Stack/porous media  + 2 heat exchangers                 ΔT 

   + initial perturbation                wave amplification 

Heat              acoustic power 

Resonator filled  with gas (He, N2), at rest, under pressure 
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n  Exp. LIMSI : resonator closed at both ends with a load  

 
 
n  Exp. A. Atchley et al, 1992-95 : resonator closed at both ends. 

H 
(mm) 

Gaz	

LIMSI 7.57	 15	 0.97	 7.5	 21	 10	 He	

  Atchley 	 1.11	 3.5	 1.06	 1	 0.5	 4.4	 He	

Closed 
end 

Closed 
end 

Heat pumping 

load 
Resonator 

Engine 

Closed 
end 

Closed 
end Resonator 

Dissipation  (load) 

Relative position of the stack                LIMSI            Atchley     lL / Lres lL / Lres = 0.089 13.0/ =resL Ll
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•  Problem: 
 
How to describe: 
-  gas oscillations (self sustained acoustic oscillations at the frequency of the 

most unstable mode) 
-  heat conduction in the gas and the solid parts 
-  oscillating flow through variable geometry (small passages and wide tubes) 

Thermoacoustics = compressible fluid dynamics (acoustics +heat transfer
+hydrodynamics) 
 
 
•  Difficulties: different space scales, times scales, order of magnitude? 
 
Therefore, description of fine physical phenomena and functioning of entire 
devices requires:  
        - very fine spatial meshes over very large domains  
        - very fine time steps over very long times  
            necessity of developing simplified models 
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Models and simulations for an entire 
thermoacoustic device 
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•  3 first order ODEs in the frequency domain  
- relating fluctuations of pressure, velocity, temperature, ω et total energy   
-  using initial conditions (at rest) of  pressure, temperature and density, physical 
properties of the gas and solid (cp, ν,  k) 
-  taking into account each element geometry  (stack, heat exchanger, tube 
portion) through its porosity and form factors in each element. 

•  Compressible 2D Navier-Stokes Eqns  
•  Hypotheses:  

- small Mach number (linear acoustics) 
-          (boundary layer approx)   
-  mono-frequency plane wave (angular frequency ω) 
-  mean temperature gradient (in the stack)  
-  integration along y   

Rott’s linear theory (1969-1980)  

  

€ 

∂ /∂x << ∂ /∂y
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Lref = Lres , pref = p0, Tref = T0 , Uref = U0, tref = Lref / c0, c0 = !p / !"( )
s,0
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•  Reference scales: 

!ref =!0 ,µ ref =µ0 , kref = k0, cp,ref = cp,0

•  Non dimensional parameters: 

quadratic  
velocity terms 
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 Asymptotic developments in powers of M 
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 Seek solution in harmonic form   (! j(x,y, t) ="e !c
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Continuity 
 
Momentum 
 
Energy 

Back to dimensional variables 
 
    - solve the the y dependence of   
 

            and similar for temperature 
    
   - integration along y   
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i
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Rott’s equations (Rott 1980, Swift1998)  
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G.W. Swift, « Thermoacoustics: a unifying perspective for some engines and 
refrigerators,  2002  

Thermoviscous functions for different geometries: 
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Electro-acoustic analogy  
Acoustic networks Electric networks 
Pressure 
Volume flow rate  
Compliance 
Inertance 
Resistance 

Voltage 
Current 
Capacitance 
Inductance 
Resistance 
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•  Compliance  

r! > 0 •  Thermal resistance  

G.W. Swift, « Thermoacoustics: a unifying perspective for some engines and 
refrigerators,  2002  

rk > 0



DELTA EC 

➾ Code for simulation and design of thermoacoustic or acoustic systems. 
¤  1993 : DELTA E, Ward et Swift, Los Alamos 
¤  2007 : new version of DELTA EC, Ward et Swift, Los Alamos 

➾ Free uploading, for Windows or Macintosh  (source code unavailable) 
     http://www.lanl.gov/thermoacoustics/DeltaEC.html 

¨  System : 
¤   Standing- or travelling-wave thermoacoustic engine or refrigerator,. 
¤   Any other 1D acoustic system  

¨  User has the choice of gas (Air, He, Ar...) or mixture of working gas, of 
the stack material, of mean pressure and mean temperature.  

¨  The system is user-defined as an assembly of segments (~20 different 
types) : stack (plates, circular or rectangular pores, pin arrays) regenerator, 
tube, convergent, transducer, pressure	  losses.	   
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Numerical solution of systems of 1D-linearized wave equations, in permanent 
regime (e iwt).   

For each segment : solve for : 

	  

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  
	  
	  
	  
	  
	  
	  
	  
Global variables:  gas, mean temperature, mean pressure, frequency  
Local variables: p1, U1, Tm, H,  geometry 
+ continuity of  p1 and u1, Tm, p2,0,HL and nL between each segment. 
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 DUCT 

	  

	  

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	  

	  	  

 

  

 

	  

 

	  

+ continuity of p1 and u1 between segments  

Stack/Regenerator STK* 

	  

	  

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	   	  	  

 

  

 

	  

 

	  

(DeltaEC	  Users	  Guide,	  Ward	  2008)	  

+	  con=nuity	  of	  p1,u1,Tm,	  between	  segments	  	   17 



	  	  

 

  

 

	  

 

	  

 

 

Numerical procedure, starting from initial segment  
¨  Shooting method  

¤   N unknown parameters (« Guesses »)  to be determined (f, p1, 
U1, ..) 

¤   N « Targets » are fixed parameter values 
The unknown parameter values are adjusted until all targets are reached.  
Newton-Raphson method (guesses have to be close to the solution) 

18 

Non linear effects included: 
¨  Singular pressure losses at each segment, section change, angle, …. 
¨  Regular pressure losses   
¨  Mean flow  
¨  2D or 3D effects,  Rayleigh streaming, jet driven streaming can be 

treated by adding pressure losses or a thermal load near at heat 
exchangers. 



Example: Standing-wave 
engine 
(Swift, 1999) 
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Example : TASHE Backhaus / Swift 1999 

	  	  

 

  

 

	  

 

	  

¤ Pm	  =	  30	  bar	  
¤ Helium	  

(DeltaEC	  Users	  Guide,	  Ward	  2008)	   20 
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CRISTA, MARGO , TADESIGN 

➾ Based of linear theory of thermoacoustics based on Rott’s equations.       
 Developped in France  CNRS /  Hekyom Society  

➾ CRISTA (similar to DELTAEC) 
¨  Equations solved with a Runge-Kutta scheme of 4th order with an 

adaptative step.  
¨  Based on shooting method  
¨  Coupling engine/load (shooting method on each part on acoustics 

variables, engine temperature and frequency) 
¨  Different acoustic architectures, including loops, derivation elements, 

multiples cells 
➾ TADESIGN (similar approach to DELTAEC) 
¨  Design of thermoacoustic engines, refrigerators, acoustic amplifiers, etc 
➾ MARGO (linear stability code)  
Prediction of the theresholds stability conditions (mean pressure, temperature 
gradient…) for each acoustic mode 
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Example: pulse tube refrigerator, 
coupled with standing wave generator, 
Hekyom 2007:  

Pm = 26.4 bar, f = 68.1 Hz 
p1,tgp = 1.351 bar 

Tcondenseur = -108°C 

Thermoacoustic engine Pulse tube 

600°C 25°C 22°C -30°C 20°C 

loop architecture 

RLC architecture: 
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A.T.A.M. de Waele, Journal of Sound and Vibration 325 (2009)  
Set of differential equations describing dynamics of individual components 
Condensed into a single ODE ->  time dependence of all dynamic variables. 
Analytical expressions are obtained for damping coefficient,  oscillation frequency, 
and onset temperature that allows stable oscillations.  
Transient effects are obtained with numerical integration of dynamic equations.  

Time dependent model derived from linear theory  



•  The linear theory allows to: 

•  Limits: 

-  compute the acoustic field and performance for a given device.  
-  predict the instability threshold through a linear stability analysis, for a given 
parameter set.  
-  choose the fixed / variable parameters in 1D codes  

-  simulations are done for one frequency only (one mode) 
-  only the periodic regime is described, no transients 
-  no hydrodynamic or acoustic nonlinearity  
-  multidimensional effects partially accounted for  
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Nonlinear 1D ans 2D models for thermoacoustic engines 

Karpov and Prosperetti work, 1997-2000 
 
-  quasi 1D non linear model integrated with 

a TVD (total variation diminishing) 
scheme: describe the growth and 
saturation of oscillations 

-  weakly non linear model fort the 
thermoacoustic instability developped in 
the time domain (mutiple time scales): 
analytical  results in initial growth, non 
linear evolution, saturation 

Hamilton et al. 2002 
 
-  Non-linear two dimensional model based   

on boundary layer approximation 
-  Finite differences with a two-step Lax-

Wendroff scheme 
-  Variable geometry  



•  No 3D simulation of full Navier Stokes equations available in the litterature 
(too time consuming) 
 

•  Simulations of 2D axisymmetric  NS equations (resonator)+porous medium 
model equations (regenerator, heat exchangers)  

 

Lycklama et al. 2005 (finite volumes with CFX,  
travelling wave thermoacoustic engine ) 
Wave amplification-on set of oscillations 
 
 
 
 
G. Y. Yu et al. 2007 (finite volumes with Fluent, 
Thermoacoustic Stirling heat engine ,TASHE) 
Onset temperature, wave amplification and saturation  
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Compressible Navier Stokes equations and associated numerical 
simulations 
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•  Full NS equations, time simulation, Finite Volumes with unstructured mesh, flux 
reconstruction method, fully-explicit, third-order Runge-Kutta scheme + 
parallelized (MPI) protocol. 

Scalo et al, AIAA 2013  : 2D axisymmetric numerical simulation of a model 
traveling-wave TASHE (double-Helmholtz resonator with the engine module at one 
end) 
  

Compressible Navier Stokes equations and associated numerical 
simulations 



Hybrid models. Low Mach number approximations. 
 2D simulations 
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 Multiple spatial scale analysis / given acoustic time scale τ  

 L~c res

τ
 L~U stack

τ
1

L
L

c
U~M

res

stack <<=

Short stack approximation leads to low Mach approximation   

à Linear acoustics in the resonator 
à  Dynamically incompressible Navier-Stokes equations in stack with leading order 

variations of density 

Applications : 
Worlikar and Knio, 1997-1999 
(thermoacoustic refrigerators) 
Besnoin, Blanc Benon, Knio 2002 
Duthil, 2004 
Hireche et al., 2010 



n  Resonator: 1D linear acoustics à 1D analytical solution   

Resonator	

Lossless acoustics	

x	
y	 Active cell	 cooler	

stack	

heater	

Closed end Loaded 
end 

n  Active cell: Low Mach approximation of Navier-Stokes à Numerical resolution 2D 

n  Coupling :  Matched asymptotic expansions  
 

   Main hypothesis: short stack (acoustically compact active cell) 
 
Ø  Unsteady simulation starting from thermal equilibrium and a small velocity 

perturbation in the resonator.   

Acoustic scale	

Stack scale	

29 

Ex: Low Mach number  of SW thermoacoustic engine 



I. Resonator 

•  Spatial scale (acoustic) : Lres = O (wavelength)  
•  Low Mach approximation of Euler equations: linear acoustics 
•  Pressure fluctuations (in time and space) of O(M) 
•  Arbitrary wave form and frequency  
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II. Heat exchangers/Stack (active cell) 

•  Hypotheses: 
Spatial scale: Lstack  = O(acoustic displacement) (interior scale) 
Navier-Stokes equations / low Mach approximation + heat conduction in solids 

Nonlinear “Incompressible” model with heat transfer 

•  Dynamic pressure correction of O(M2), superimposed to uniform spatial fluctuations 
(of dominant order)  
•  2D geometry,  potentially complex 2D Numerical solution 
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III. Matching: 

•  Two spatial scales:  stack length  Lstack= O(U x tac) 
 resonator length  Lres= O(c x tac) 

•  Length ratio  = O(U/c) = O(M) → 0 
 Both solutions must match as M → 0  
 Interior sol. (position ∞) = Exterior Sol. (position of active cell)  

 → singular perturbation problem  
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Adiabatic exterior boundaries (blue)   

Slip on open horizontal boundaries  

No-slip, continuity of temperature and heat flux at fluid/solid interfaces  –
stack and heat exchangers)  

Temperature fixed on heat exchangers 

Velocities uL and uR calculated using coupling with the resonator and 
energy balance.   

Modèle 2D  
uL uR 

Thot Tcold 
 Boundary conditions 

Linear distribution  of temperature between heat exchangers (gas and 
stack) OR steady heat conduction solution  without flow 

Resonator : random noise  

and initial conditions  
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§  Finite volumes /second order  

§  Implicite scheme for viscous and diffusive terms   

§  Explicite scheme for convective terms  

§  Time integration: predictor-corrector scheme   

§  Fields calculated on the whole fluid/solid domain (use of a scalar function 
to differentiate between fluid and solid points) 

§  At each time step, solve for uL, uR et p(1)  as functions of previous values 
accounting for  (i) propagation in the resonator and (ii) energy balance.  

Numerical method 
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Uniform mesh:  512x32 (coarse) to  2048x128 (fine)   
Minimum 500 time steps per reference acoustic period  
~ 0.5-2 hr CPU/run for the initial amplification phase 
~ 50 hr CPU/run for obtaining wave saturation 
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Results in agreement with  Atchley et al, JASA 91, 734-743 (1992) 
For 3 mean pressure values, a value of the load is determined such that the critical 
ΔT matches the experimental one.The corresponding mode is found to be the same. 
For 440kPa, the transition is found correctly for mode I and mode II. 

Closed 
end 

Closed 
end 

Dissipation  (load) 

Value of the load representing the gas viscous dissipation giving the 
same critical temperature as the experiment 

The initial time signal of acoustic pressure contains multiple frequencies. It can be 
analyzed to determine the growth rate of each mode  

Results: thermoacoustic instability 

For each geometry and value of the load, the critical temperature can then be 
determined, as well as the associated most unstable mode.  
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act

tdup
t
SP st
ac

ac ~

~~'~~ WPac 66≈ kWQh 8.3≈ cηη 1.0≈

Estimate of acoustic power, heating power at the hot heat exchanger, efficiency :  

 Hot HX                               stack 

Results : Periodic regime 
Adjust the load value and the temperature 
difference to obtain saturation 

Vortices form periodically between stack/heat 
exchangers, and at entrance and exit of the 
heat-exchangers. 



Models and simulations for specific components of 
thermoacoustic devices 
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•  Stacks: edge effects  
vortex generation at the end of stack plates 
low Mach number simulations  
compressible NS simulations  
(Marx and Blanc Benon 2004, 2005) 
thermal wave harmonics generation 
 (Gusev et al. 2000, 2001,  
Marx and Blanc Benon 2005)  
Regenerators: porous media models; analytical models (Raspet et al. 1998, 
Swift 1996, 2002, Wilen 2001, Roh 2007) and hybrid lattice Boltzmann 
simulations ( Jensen and Raspet 2009, 2010) 
 

•  Heat-exchangers models: analytical models (Mozurkewich, 1998,2001) and 
numerical simulations (Worlikar et al. 1998, Ishikawa and Mee, 2001, 
Besnoin and Knio 2004, Matveev et al. 2006, 2007) 

•  Resonators : acoustic streaming linear and non linear regime 
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Nonlinear streaming in a standing wave resonator 

Streaming flow= 2nd order mean flow produced by interaction  acoustic wave/solid wall. 
Responsible for thermal loss in thermoacoustic devices. 

Analytical models : 
« slow » streaming: Rayleigh 1883, Schlichting 1932, Stuart 1966, Bailliet et al. 
2001, Hamilton et al. 2003,  Boumerfel et al. 2011   
« fast » streaming : Menguy and Gilbert 2000 
 
Experimental studies : Arroyo and Greated 1991, Campbell et al. 2000, Thompson 
and Atchley 2004, Moreau et al. 2008, Nabavi et al.2009 
 
Numerical studies : Aktas and Farouk 2004, 2008,2009, Yano 2005 , Daru et al 2012 
Boumerfel et al. 2011 



+  ideal gas law 
+  no slip + fixed temperature on walls 
+  symmetry conditions on vertical boundaries  
+  Axisymmetric or cartesian geometry 44 

Empty resonator, shaken axially with harmonic velocity, at resonance frequency 
Full compressible Navier-Stokes equations, expressed in moving frame + source 
term (shaking) 

air 

! 

2R

! 

L



6250/Tt =δ
Spatially uniform mesh /direction:     500x50 to 500x400 

Numerical schemes : explicit upwind finite differences (Daru & Tenaud 2004). 

Convective terms: 3rd order in space/time Upwind scheme, 

Diffusive terms : 2nd order centered scheme 

Strang-splitting procedure used to obtain a 2nd order accuracy every 2 time steps 

Scheme is implemented as a correction to the second order Mac-Cormack scheme. 

Numerical method 

Long physical transient periods (several hundreds of periods) to reach steady state 
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Mach Number :      
 
Nonlinear Reynolds number : 

    

Results : simulation cases 
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     Streaming equations  outside the boundary layer (Menguy & Gilbert, 2000) : 

!" / R <<1, M <<1
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Axial mean velocity  Ust , normalized with     

Comparison with experiments Reyt et. al 2013    

0
2
maxRayleigh c8/U3u =

x/L

U
st
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ReNL=1.03
ReNL=4.97
ReNL=16.11
ReNL=29.19
Rayleigh

Numerical results   Experimental result   

Similiar wave guides type: wide cylindrical resonators 
Similar thermal wall boundary conditions (fixed temperature) 

Different acoustics for 6<ReN: 
Simulations: presence of shocks  Experience: monofrequency wave   
Different dimensions 
Simulations:      Experience:   Hz20000f,mm6.17 ==λ Hz240f,m42.1 ==λ

Displacement of the maximum values towards velocity nodes 

48 



49 

•  Numerical study of transition from slow acoustic streaming (linear regime) to 
fast acoustic streaming (non linear regime), in agreement with experiments 

•  Symmetry breakings for ReNL≥1 and at ReNL≈30 an additional vortex is 
generated on the central line, close to velocity antinode , again in agreement 
with experiments 

•  An intricate coupling between the mean temperature field and the streaming 
flow.  

Streaming dynamics in the non linear regime  
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Conclusion 



Incomplete review of current research in thermoacoustics: 
 
Main observations: 
•  thermoacoustic devices are based on simple principles.... but the actual physics 

taking place is complex   
•  numerical codes used for design (DELTA-EC, CRISTA,...) and estimate of 

efficiency are based on a linear, periodic and 1D analysis when reality is very 
different.  

 
Main current academic research (object : establish some models that can be 
included in numerical codes used for design) 
•  detailed models of stack/regenerators with complex geometry 
•  models/optimisation of heat exchangers : thermal and hydrodynamic edge 

effects , variable geometry  
•  fine description of coupling effects in: jet pumps, T, conical tubes 
•  coupling effects :  acoustic source/ waveguide, thermoacoustic engine/

alternator, thermoacoustic engine/TGP 
•  fine description of nonlinear effects: acoustic streaming, NL propagation, 

turbulence 
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