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Introduction

Models and simulations for an entire thermoacoustic device:
o Linear acoustic theory and 1D numerical simulations
o 1D time dependent models

o  Full Navier Stokes equations and associated 2D/3D
numerical simulations

o  Hybrid model: Low Mach number approximation and 2D
numerical simulations

Models and simulations for specific components of
thermoacoustic devices

Conclusion



Introduction

Example of an entire thermoacoustic device:
standing wave thermoacoustic engine / variable load
(demonstrator by Hekyom society - France),

Closed
end

Resonator

Resonator filled with gas (He, N,), at rest, under pressure

Stack/porous media + 2 heat exchangers ==> AT

+ initial perturbation ©=—=> wave amplification

Heat —=> acoustic power



B Exp. LIMSI : resonator closed at both ends with a load

Engine Heat pumping
Closed OOy — — Closed

end I 1 Resonator \ ! , end

load

Qh C o

B Exp. A. Atchley et al, 1992-95 : resonator closed at both ends.

Closed [ZSpgEg——=———"—"""—""—5""1 Closed
end end

\

Resonator
r i

Dissipation (load)

E Xp. Lres Lst H Lacoustic Lthermal P m
(m) (cm) (mm) (ms) (min) (bar)

LIMSI 7.57 15 0.97 7.5 21 10

Atchley 1.11 3.5 1.06 1 0.5 4.4

Relative position of the stack /, / L, LIMSI/, /L =0.089

Gaz

He
He

Atchley /; /L,, =0.13
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* Problem:

How to describe:

- gas oscillations (self sustained acoustic oscillations at the frequency of the
most unstable mode)

- heat conduction in the gas and the solid parts

- oscillating flow through variable geometry (small passages and wide tubes)

Thermoacoustics = compressible fluid dynamics (acoustics +heat transfer
+hydrodynamics)

* Difficulties: different space scales, times scales, order of magnitude?

Therefore, description of fine physical phenomena and functioning of entire
devices requires:
- very fine spatial meshes over very large domains
- very fine time steps over very long times
necessity of developing simplified models
—>



Models and simulations for an entire
thermoacoustic device



Rott’s linear theory (1969-1980)
(a)

» Compressible 2D Navier-Stokes Eqns

il
l,

*
\

* Hypotheses: ™ Stack of plates
- small Mach number (linear acoustics) (b)
- 0/ 0x << d/ dy (boundary layer approx) ::":
- mono-frequency plane wave (angular frequency w) g
- mean temperature gradient (in the stack) P R — 57
I-_L:) - integration along y VPR 2v,
Solid

* 3 first order ODEs in the frequency domain
- relating fluctuations of pressure, velocity, temperature, w et total energy
- using initial conditions (at rest) of pressure, temperature and density, physical
properties of the gas and solid (¢, v, k)
- taking into account each element geometry (stack, heat exchanger, tube
portion) through its porosity and form factors in each element.



Reference scales:

Lref - Lres’pref =p0’Tr =T0’Uref _UO’ - L /CO’CO =\/(ap/ap)s’o
pref - pO’ Mref . MO’ kref . kO’ Cp,ref . Cp,O
Non dimensional parameters:

9} UL c UL S _
M=—0,Re=—pO 0 reS,Pe=p0 P 0 _RePre=—0,8 = 2—V,F=Y :

CO MO kO Lres W Y

Compressible dimensionless Navier-Stokes equations

ap+M—(pu)+M—y(pV) 0

ot
2 2 2 2
pa_u+Mpua_u+MpVau=_ 1 ap+MM 81)21_'_ 1281; " §+l M au+ Y
ot 0X dy YM 0x Relox™ € dy w 3/)Relox> 0xdy
o i Mou L i MovIL o 1P e P s M 2P v af+ quadratic
Jt 0x dy  dt 0x dy  €Pedy’  velocity terms

p=pT
8



_UO _ 6\/
C ’ L

0 res

Small parameters:

Within the boundary layer: & =O(M), 1<<M Re

Asymptotic developments in powers of M

<e>=<e>0)+M< o>+ o(M)

) = const =

P =p?(x), p*

)]

Continuity it Ix
9 (0)
Momentum P& __
ot
()
Energy 0® a:;t o

State law p(O)T“)

N OMOI ai (©Ov®) =0

M 82 (0)
e’ Re dy’

e’Pe dy’



Seek solution in harmonic form (§;(X,y,t) = me{%ﬁj)(x,y)eiwt}), j=0,1

0 Ve

dJy
1 op” , M 9*u'”
y dx € Re ay’

(0) 2T®
Energy p(O)Cp(inc(l) + u20) %) —i(DﬁpS) _ k 07T
X

. 0
(1) (0),,(0)
L. 1P +— u )+ =0
Contlnulty Pe 0X C ¢ )*+p

(O)imuio) =—

Momentum P

e’Pe dy’
Back to dimensional variables
- solve the the y dependence of ul”, TV
o ; )
u- = —(0)[1 -h, (Y)]— and similar for temperature
WP 0x

- integration along y
U = fUOuf:O) dy, p,=p,p.,T, = fTOTC(j) dy

———  Rott’s equations  (Rott 1980, Swift1998)



Rott’s equations (Rott 1980, Swift1998)

dp, __11wp, U

dx Al—fV !

dU 1WA f f 1 dT
t=———[1+(y=-Df _]p, + U,

dx YD, (1-f )(1 Pr)T dx

pu[U [
2
2A0(1-Pro)|1- 1|

) dT
H2=1Re Im(f +Prf *)—0
2 K v dX

f —f *
plUl* 1_ K v
(1-£ *)(1+ Pr)

dT

) 0
solid ™ solid dX

-(A+A

f ,f = thermoviscous functions (stack geometry dependent)
dT

solid solid) dX

H,(x) = —p sfte[hU] (Ak + A

2n

E (x)= %jme{pl(x)eimt}me{Uleimt }dt _ %?Re[plU’f] (acoustic power)
0

(total power)
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Thermoviscous functions for different geometries:

1.0 : . :
—_—— Parallel plates
Rectangular pores
— — —— Circular pores
Pin array
Boundary layer
05 ]
AN
~
0.0
T
-0.5 : :
0 3 4 5 6
r./o

Figure 4.14: Spatial-average function f for several geometries. The rectangle here has 6:1
aspect ratio, and the pin array has r,/r; = 6. The boundary-layer limit is approached at
large 71, in all geometries. Using 74/8, on the horizontal axis yields f, on the vertical axis,
and using 7}, /6, yields f,.

G.W. Swift, « Thermoacoustics: a unifying perspective for some engines and

refrigerators, 2002
12



Electro-acoustic analogy

Acoustic networks Electric networks
Pressure Voltage
Volume flow rate Current
Compliance Capacitance
Inertance Inductance
Resistance Resistance
e .
dp, __1wp, U, | S [ dp = —(imldx +1,dx)U, 1
L dx 1- fV A
P
' f —f dT
dU1=—1wAdX[1+(y—l)fK]pl+ (£t U, }
L YP, (1-£,)a-Pr) T,
|_| > [dU1 = —(1wcdx + ldx)p1 + ngUl}
r
k
thermoacoustic waves
T Tat dT,
p:' 1dx  ndx R +dp,

—’_.-l v —WWA —
U, i + dy;



* Inertance >0  Compliance

,_p, 1-Be{s} c=%<l+(v—l>$ﬁe{g}>
A ‘l_fv 2 0
+ Viscous resistance 7 >0  Thermal resistance 1,_>0
L _op, %m{—fy} 1 _y-1 ooli”sm{—fv}
TA ‘l—fv‘z L v Py
S—— S

F % refrigerators

Figure 4.17: Schematic impedance diagram for the standing-wave engine example.

G.W. Swift, « Thermoacoustics: a unifying perspective for some engines and
refrigerators, 2002 4



DELTA EC

=> Code for simulation and design of thermoacoustic or acoustic systems.
1993 : DELTA E, Ward et Swift, Los Alamos

2007 : new version of DELTA EC, Ward et Swift, Los Alamos
=> Free uploading, for Windows or Macintosh (source code unavailable)

http://www .lanl.gov/thermoacoustics/DeltaEC.html

System :
Standing- or travelling-wave thermoacoustic engine or refrigerator,.

Any other 1D acoustic system

User has the choice of gas (Air, He, Ar...) or mixture of working gas, of
the stack material, of mean pressure and mean temperature.

The system is user-defined as an assembly of segments (~20 different
types) : stack (plates, circular or rectangular pores, pin arrays) regenerator,
tube, convergent, transducer, pressure losses.

15



Numerical solution of systems of 1D-linearized wave equations, in permanent
regime (e ™).

For each segment : solve for :

dp,

Z =  Fromentum (10cal and global parameters and variables).
dzx
d(.,"l ) ' .
T = Feontinuity(local and global parameters and variables).
dx ’
dT,, , .
T = Faenergy(local and global parameters and variables),
dx ’ '
dT~olid ) v . .
; = F.oiallocal and global parameters and variables).
dx
dHtot ‘ \
I = Flateral enerey(local and global parameters and variables).
dzx =
dp20 HL , , .
———— = Fiead 10s: (l0cal and global parameters and variables).
dx
dng ) | , .
T = Fmix sep(local and global parameters and variables).
ax

Global variables: gas, mean temperature, mean pressure, frequency
Local variables: p,, U,, T.., H, geometry
+ continuity of p; and u; T p, oy and n; between each segment. 16



DUCT dp, wp,,

—_— = —%Lrl .
lx 1—-f,)A .
l([% (_ A v) . + continuity of p, and u, between segments
al/q AW Y — )
e 14 - .| 1.
dx P 02 ( N 1+ esf ) P
StaCk/RCgGIlel’atOl‘ STK* (DeltaEC Users Guide, Ward 2008)
@ | (b) -2 © e
2y ? i #:2! 2a‘—|[—”9T]|:—H—“: 21, : QOQOOOQOQ Q00O
b Il [ — T2/ ! OO0O00O gleoje/ele
g 00000 CUOOC

Pressure propagates according to Rott’s wave equation, written in the form

17 W . L
?_ it S 5 ) (9.51)
dz — fuv)Agas

l(/' ‘;.»L 4_1 4 | ]. -h: K 1/ ZT - / -~
e _ gfs 1+ A » + 5(fs = 1v) _ ‘ U, (9.52)
dx PO 1+ € (1— f,, (1—0)(l+¢€s) dx

subject to the condition that the total energy flow Hs; is independent of x, which imposes
the following condition on 7,,(z):

i T B(fx—fv)
dTm B H--, — —Re |:[)|( (1 - 1+e,‘,)(|+cr)(l—fp)):| (9 53)
de Pmo|U [ (fx—fu) (1€ fu/ fx) A '
2wAgag(lp—0)lll—f, |2 llll [f)/ + (l—+—€ )(I—{-O’)/ :| - .-'lgaslt - "‘sohdl‘s
17
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Numerical procedure, starting from initial segment

Shooting method
N unknown parameters (« Guesses ») to be determined (7, p1,
Ui, ..)
N « Targets » are fixed parameter values
The unknown parameter values are adjusted until all targets are reached.

Newton-Raphson method (guesses have to be close to the solution)

Non linear effects included:
Singular pressure losses at each segment, section change, angle, ....
Regular pressure losses
Mean flow

2D or 3D effects, Rayleigh streaming, jet driven streaming can be
treated by adding pressure losses or a thermal load near at heat
exchangers.

18



()

T

3000 T .
stack . 1otal power

Acoustic power

L hot ht. ex.

L
-1000 | ' !
= 600] %
> v
3 %
£ 400+ A -
N
200 - : : :
0.0 0.1 02 0.3 0.4 05 06 0.7
x (m)

% U, and I, 5.7: Acoustic power Ez, total power H,, and mean temperature 75, as
;: 4 : L Y 1 = for the standing-wave engine, under the same conditions as Fig. 4
rer” is abbreviated “ht. ex.”
o2 : ; : A 5 .
00 01 02 03 04 05 08 07
X (m) . :
Example: Standing-wave
4.18: Results of numerical integration of the momentum and continuity equations for engine
nding-wave engine example first introduced in Figs. 1.8 and 1.9. (a) Relevant portions
e impedance diagram. (b) Scale drawing of apparatus. (c¢) p;. (d) U,. The numerical (SWlft 1999)
’

tion unrealistically assigned the entire impedance of the “branch to refrigerator” at
nt = 0.18 m, causing unrealistic discontinuities there.

19



Example : TASHE Backhaus / Swift 1999

/ Compliance

Jet pump

d
Main cold heat . l 1 m 1
- / exchanger (Q.) P i }
1;-/ OO T e . .
T ] ‘.'o‘o“ <— Regenerator * W Vanable aCOUStIC |Oad
T~ load
h |_— r\ h,edge l
T, A Ny . L L '
hgas W, Hot heat exchanger (Qy,) I 1 ——
T 1 | <= Themal bufter tube (T8T) p Wm P Resonator
Secondary cold heat
|_/ exchanger and flow
\ﬁll il f straightener
R
L Wy, X W,z Toresonator —> Pm = 30 bar
Helium

Feedback inertance ~ Resonator ]unc}xon 20 cm

(DeltaEC Users Guide, Ward 2008) 20



CRISTA, MARGO , TADESIGN

=> Based of linear theory of thermoacoustics based on Rott’s equations.
Developped in France CNRS / Hekyom Society
=> CRISTA (similar to DELTAEC)

Equations solved with a Runge-Kutta scheme of 4th order with an
adaptative step.

Based on shooting method

Coupling engine/load (shooting method on each part on acoustics
variables, engine temperature and frequency)

Different acoustic architectures, including loops, derivation elements,
multiples cells

=> TADESIGN (similar approach to DELTAEC)

Design of thermoacoustic engines, refrigerators, acoustic amplifiers, etc
=> MARGQO (linear stability code)
Prediction of the theresholds stability conditions (mean pressure, temperature

gradient...) for each acoustic mode
21



Example: pulse tube refrigerator,

coupled with standing wave generator,
Hekyom 2007:

<— loop architecture

P =26.4 bar, f=68.1 Hz
Py = 1.351 bar

= Tcondenseur =-108°C

RLC architecture:
AN

o

Bl — E |

t 1 il

600°C  25°C_ 22°C  -30°C  20°C

Thermoacoustic engine Pulse tube
22
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Time dependent model derived from linear theory

A.T.A.M. de Waele, Journal of Sound and Vibration 325 (2009)

Set of differential equations describing dynamics of individual components
Condensed into a single ODE -> time dependence of all dynamic variables.
Analytical expressions are obtained for damping coefficient, oscillation frequency,
and onset temperature that allows stable oscillations.

Transient effects are obtained with numerical integration of dynamic equations.

’ ; t PR~ a
mertance TEE 5 SHEL . . IM?H#? regenerator
1 incrtance 0 = T,
T tf pulso tuse M t\l/ I/ll_ pUISC tube
4= resonator 1 .
7/ 79
R / ’ . resonator
disp,  d3op,  dop,  dop, l”r I I
+ a- — 4 - —4a + apop; =0 —
dd P Tae Y ae 1=qr + 0% - s
Vs ipb A My

az = weCo + wcCr + teweCr,
ay = AQRWe + G;W¢ + ajWe + WeWe (G,
ay = wewe(Crag + Coa;),

23
ao = cheaRai.



* The linear theory allows to:

- compute the acoustic field and performance for a given device.
- predict the instability threshold through a linear stability analysis, for a given
parameter set.

- choose the fixed / variable parameters in 1D codes

e Limits:

- simulations are done for one frequency only (one mode)
- only the periodic regime is described, no transients
- no hydrodynamic or acoustic nonlinearity

- multidimensional effects partially accounted for

24



Nonlinear 1D ans 2D models for thermoacoustic engines

Karpov and Prosperetti work, 1997-2000 or— — 1

— quasi 1D non linear model integrated with
a TVD (total variation diminishing)
scheme: describe the growth and
saturation of oscillations

- weakly non linear model fort the Bo5 5 65 075 100 T 150 155 100 155 %
thermoacoustic instability developped in

FIG. 10. Transient behavior of the pressure at the cold end of the tube for a

the time domain (mutiple time scales): ey T s Iy F=o08 & Seemkat Iy
analytical results in initial growth, non
linear evolution, saturation L5 , 1 l -
14 —
. _13F /\J‘” B :
Hamilton et al. 2002 g
3 12 -
=1k ':‘ .
— Non-linear two dimensional model based N
on boundary layer approximation 09306200 / 3008001000
. . . . t/ty
— Finite differences with a two-step Lax- |
FIG. 4. Onset of o..scillalim.l.s a‘nd l.rflrls;irlil)rl ui ﬁmady §1-ale ir'l an eng:fnlej .wilh
Wendroff scheme constn crosssetn. Sold v s pek pusive presee e wvetor
— Variable geometry pressure 25



Compressible Navier Stokes equations and associated numerical
simulations

No 3D simulation of full Navier Stokes equations available in the litterature

(too time consuming)
Simulations of 2D axisymmetric NS equations (resonator)+porous medium

model equations (regenerator, heat exchangers)

Lycklama et al. 2005 (finite volumes with CFX,
travelling wave thermoacoustic engine )
Wave amplification-on set of oscillations

Tnerpunce
Compliance

Air !
—/—- J ;\
Resonator A A"b‘l ent HX
Hot HX

G. Y. Yu et al. 2007 (finite volumes with Fluent,

Thermoacoustic Stirling heat engine ,TASHE)
Onset temperature, wave amplification and saturation

P (kPa)




Compressible Navier Stokes equations and associated numerical
simulations

e Full NS equations, time simulation, Finite Volumes with unstructured mesh, flux
reconstruction method, fully-explicit, third-order Runge-Kutta scheme +
parallelized (MPI) protocol.

Scalo et al, ATAA 2013 : 2D axisymmetric numerical simulation of a model
traveling-wave TASHE (double-Helmholtz resonator with the engine module at one

end)

N
m
| B
=
=
L3
=
- “"
— !
. "
=
o
=
|
=
-
e
L]

-

Fapax 1L (G of xxal comp of Lo -averaggd v ammg veloaty (1U,) sad cormapondag strasslie s Full-scak veualoation (lop) sad xeom ee the rght cad (hotleml. Reosdts have lven mirroecd
about the conterline for dhatrative purposecs.

27



Hybrid models. Low Mach number approximations.
2D simulations

Multiple spatial scale analysis / given acoustic time scale t

Lres U ~ Lstack M ~ H _ Lstack <<1

CN
T T C L

Ics

Short stack approximation leads to low Mach approximation

—> Linear acoustics in the resonator
- Dynamically incompressible Navier-Stokes equations in stack with leading order
variations of density

. . t=tp+6T/16 1m/s:— Vorticity (s") t=tp+6T/16 Temperature
Applications : 8 s ° L
Worlikar and Knio, 1997-1999 24 5
. . 1.3
(thermoacoustic refrigerators) == 02 E4
Besnoin, Blanc Benon, Knio 2002 : 08 < |
. ] -2.0
Duthil, 2004 ' a1 ]
2

Hireche et al., 2010




Ex: Low Mach number of SW thermoacoustic engine

Loaded
end

Closed end

Acoustic scale

Stack scale

u,
yL>X - OO P e T =T T T TR E+OO

B Resonator: 1D linear acoustics = 1D analytical solution

B Active cell: Low Mach approximation of Navier-Stokes > Numerical resolution 2D

B Coupling : Matched asymptotic expansions
Main hypothesis: short stack (acoustically compact active cell)

» Unsteady simulation starting from thermal equilibrium and a small velocity
perturbation in the resonator. 29



I. Resonator

» Spatial scale (acoustic) : L., = O (wavelength)

» Low Mach approximation of Euler equations: linear acoustics
e Pressure fluctuations (in time and space) of O(M)

* Arbitrary wave form and frequency

Linear acoustics

Lp >
P AW _ |
ot 0X
Reference 0 Jgu Mopu ou_ 1 dp
ot 0X YM 0x
— oT d(puT 0 0
Lref =Lre59 Pref =p09Tref _TO p—+M (p];l )=r—p+MFU—IA)
ot 0X ot 0X

30
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Closed end load
‘ ________________ Linear acoustics
L, 0-0* Ln
Asymptotic developments in powers of M
9p® ) 0 Vu”) _

0

ot 0xX Analytical solution (Riemann invariants)
(0) M

p@ U [ 1dp 7 _ 9 (@ £ TOLOY L TO 0 L [TO0) g
ot Y o0X ot 0X

05 (0 as? ©) , /7O D ©) _ /T @D

ot o aA=O R=yu™" +v1I'"p""; L=yu" —~1T""p

X
p©@ _ oOTO _
Closed end: u P = -L;)=0

_ _ _ _ 2-L
R(07,0) =y u(07, ) + [Ty PV(07,0) =-L(0™ .ty ) tieft, —¢— = =L

Loaded end: p‘V (% = Lg) = fu©@ (R = Lz)

_f . icht 2'L
L0 = 7 u(0") = Tegua PV(0") = T ROT )t =t
CO
v-f Z — —1 QOpen end 3l

Z Z — +1 Closed end

7Z — 0 Non reflecting wave

=\(+f



I1. Heat exchangers/Stack (active cell)

[}
[}
[}
] »

| Résonateur
[}

[}

]

[}

L_

iy -

* Hypotheses:

Spatial scale: L, , = O(acoustic displacement) (interior scale)

stack
Navier-Stokes equations / low Mach approximation + heat conduction in solids

Nonlinear “Incompressible” model with heat transfer

« Dynamic pressure correction of O(M?), superimposed to uniform spatial fluctuations

(of dominant order)

* 2D geometry, potentially complex => 2D Numerical solution



Lref = Lstack > Pref = Po DTref = TO
ap®

+V-pOV©O _g
dt

p® =p (1)
p =p® (1) Neglect gravity

(0)y/(0)
PV )+V-[p(O)V(0) ®V<0)]= _lvp@) +M)ez IR ()
91 v Re

T=n? [VV(O) +(VV )y —i(v-v(o))ll

0
= 1V'(k(0)VT(O))+ Y—ldp( )
Pe y dt

0
O[T 0y

(0)

p©® _ OO

This formulation allows time variations of p(©

ﬂ — L VT  Heat conduction in plates
ot Pe,



II1. Matching:

* Two spatial scales: stack length L, ,=O(U x t,)
resonator length L =0O(cxt,.)

* Length ratio = O(U/c) = 0O(M) — 0
Both solutions must match as M — 0
Interior sol. (position ) = Exterior Sol. (position of active cell)

— singular perturbation problem

34



Active cell transparent to pressure fluctuations but acts as a volume source.

0
ag(t) +V-pOVO _g

p =p™ (1)

0)y/ (0
(P VV®) +V°[p(O)V(O) ®V(O)]= _lvp(z) L v.g©

Jdt Y Re

= u© [VV(O) £ (VVO)! —%(V’V(O) )I]

0 0
0 oT + (VO .v)T® —Pl V-(k(O)VT(O))+L\}1<12(t)
c

P

(0) @)

p =P = constant =1

35



At each time step, coupling is ensured through solving 3 equations

T .. lef left
(Y up + Tchaudpg) )(t) = '(Y Up — Tchaud pgt) )(tbea;k tbeaCk

/ igh ri
(Y Ur —/ Tfroidpgp )(t) = Z(Y Up + Tfroid pg) )(t‘f)lagclz tb;gcl;lli

1
H(u, —uR)+Fe!VT°ndS=O

— 3 eqns for 3 unknowns u,, MR,PS)

=t

=t

2.LL
LT \/ TH
2 ° LR

B LT AY TC

36



Boundary conditions and initial conditions

T T,
___________ e L
) s vz
>
i Modéle 2D UR
____________ N Wi

Adiabatic exterior boundaries (blue)
Slip on open horizontal boundaries

No-slip, continuity of temperature and heat flux at fluid/solid interfaces —
stack and heat exchangers)

Temperature fixed on heat exchangers

Velocities u;, and uj, calculated using coupling with the resonator and
energy balance.

Linear distribution of temperature between heat exchangers (gas and
stack) OR steady heat conduction solution without flow

Resonator : random noise

O 90 2 2 b s hhLooa o
[ N N N - ]
& & & ] & 22
& @ &
3 2

37



Numerical method

" Finite volumes /second order

= Implicite scheme for viscous and diffusive terms
= Explicite scheme for convective terms

* Time integration: predictor-corrector scheme

= Fields calculated on the whole fluid/solid domain (use of a scalar function
to differentiate between fluid and solid points)

= At each time step, solve for u;, u; et p!) as functions of previous values
accounting for (i) propagation in the resonator and (i1) energy balance.

Uniform mesh: 512x32 (coarse) to 2048x128 (fine)
Minimum 500 time steps per reference acoustic period
~ 0.5-2 hr CPU/run for the initial amplification phase
~ 50 hr CPU/run for obtaining wave saturation

38



Results: thermoacoustic instability

The 1nitial time signal of acoustic pressure contains multiple frequencies. It can be
analyzed to determine the growth rate of each mode

000000

aaaaaa

oooooo

For each geometry and value of the load, the critical temperature can then be
determined, as well as the associated most unstable mode.

Closed E&%@md
end I l end

Q¢ Dissipation (load)

T T e o B B S pma e e

BT gnget (K)

W w & s 0 '3 o
o ['d o [ o 'd (=]

o o o (<]

L B e e
% | '\i"
‘%;
1 1

.............

Results in agreement with Atchley et al, JA4SA4 91, 734-743 (1992)
For 3 mean pressure values, a value of the load is determined such that the critical

AT matches the experimental one.The corresponding mode 1s found to be the same.
For 440kPa, the transition is found correctly for mode I and mode II.

Value of the load representing the gas viscous dissipation giving the %
same critical temperature as the experiment



p’ (Pa)

40000

Results : Periodic regime

20000
éi L
= 0
oy
-20000 |
- 40000 i i | |
0 10 20 30 40 50 60 70
t(s)
60000 , 24
p—
u- S
30000 | 5 ~ N7 12
\“. .‘; ‘.'. [i “"
0 E ! E f % 0
VISV
Y / o
)4 :A' ;r j
-30000 |- \AD o WSS
-60000 24
66.24 66.25 66.26
t(s)

Adjust the load value and the temperature
difference to obtain saturation

u’,u (m/s)

X
Vortices form periodically between stack/heat

exchangers, and at entrance and exit of the
heat-exchangers.

Estimate of acoustic power, heating power at the hot heat exchanger, efficiency :

S
jFLC ==
tﬁc

t ac

[ P adi

P, ~66W

O, ~3.8kW n=0.1n,



Models and simulations for specific components of
thermoacoustic devices
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Stacks: edge effects

vortex generation at the end of stack plat: g/Lo = 0.261
low Mach number simulations ~ g‘::-—.-:-_-:-_-;_»; G\ T i

. . . 1B e B R ) o e T
compressible NS simulations %0 e

o e e e R

(Marx and Blanc Benon 2004, 2005) -"“'\7'9\'\3:\"‘\1‘"5'0' &1 82 8

thermal wave harmonics generation ~. 7
E .

(Gusev et al. 2000, 2001, E B
Marx and Blanc Benon 2005) ‘
Regenerators: porous media models; analytical models (Raspet et al. 1998,

Swift 1996, 2002, Wilen 2001, Roh 2007) and hybrid lattice Boltzmann
simulations ( Jensen and Raspet 2009, 2010)

‘81 82 8

Heat-exchangers models: analytical models (Mozurkewich, 1998,2001) and
numerical simulations (Worlikar et al. 1998, Ishikawa and Mee, 2001,
Besnoin and Knio 2004, Matveev et al. 2006, 2007)

Resonators : acoustic streaming linear and non linear regime
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Nonlinear streaming in a standing wave resonator

Streaming flow= 2" order mean flow produced by interaction acoustic wave/solid wall.
Responsible for thermal loss in thermoacoustic devices.

—— &———>
ey >

Analytical models :

« slow » streaming: Rayleigh 1883, Schlichting 1932, Stuart 1966, Bailliet et al.
2001, Hamilton et al. 2003, Boumertel et al. 2011

« fast » streaming : Menguy and Gilbert 2000

Experimental studies : Arroyo and Greated 1991, Campbell et al. 2000, Thompson
and Atchley 2004, Moreau et al. 2008, Nabavi et al.2009

Numerical studies : Aktas and Farouk 2004, 2008,2009, Yano 2005 , Daru et al 2012
Boumerfel et al. 2011 43
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| arr |

<€ >

L

Empty resonator, shaken axially with harmonic velocity, at resonance frequency
Full compressible Navier-Stokes equations, expressed in moving frame + source
term (shaking)

o T V - (pv) = 0 )

9pv o av

{ — /. URU / — f (T ) — p—
o + V.- (pr@7)+ Vp V-(T)—p g )
OpE | ] v
EZ 4V (pET+p0) = V- (kVT)+ V- (70) - p7-

1deal gas law
no slip + fixed temperature on walls
symmetry conditions on vertical boundaries

: : : 44
Axisymmetric or cartesian geometry



Numerical method

Numerical schemes : explicit upwind finite differences (Daru & Tenaud 2004).
Convective terms: 3rd order in space/time Upwind scheme,

Diffusive terms : 2" order centered scheme

Strang-splitting procedure used to obtain a 2nd order accuracy every 2 time steps

Scheme is implemented as a correction to the second order Mac-Cormack scheme.

()[

n

* r \ 11 <./ s\n
M"i.j - Wi.j o r /()’ (1/2), l(fl l,j _- (1/2) /) — Ti—(1/2) /(./l ] _/l— 1/ 2'}._/’). + ()[(h + h\)i.j
ot
“r.j:“u_rl_ /"5’ (1/ ’I/(fll_. (1/ ’w') (1/2), /Ul I, /_/l— 12)._/).
n+1 1 ' I - ) C,,. A
wii =5 +w) + ’—(_ i+(1/2).7C i a72). — Ti-1/2).Ci—1/2).5)-
2 i j

Long physical transient periods (several hundreds of periods) to reach steady state
ot=T/6250

Spatially uniform mesh /direction:  500x50 to 500x400 45



Results : simulation cases

Mach Number: M = Unan €[0.005; 0.13]
Co 2
Nonlinear Reynolds number : Re,, =| M 55) & [0.04; 29] k = 40
) 5,

Asymptotic model 6, /R<<1, M <<1

Streaming equations outside the boundary layer (Menguy & Gilbert, 2000) :

I du,, 190
axs ¥ ror (tv55) =0 Slow Streaming
] 1 (regular) Reyp <<1
Jd o ) )
(r 2 ) =|Renp (U — s + Voo s )+ f(x)
| ror or 0X or
u=cy(Mu, + Mzus) Fast Streaming

f(x) = Acoustic terms (products of first order (irregular) Reyy =1

quantities ) + 2" order steady pressure gradient 46



Example of results

U (m/s)
S

Rey =1

AT=0.002 ||

Rey =5

U (mis)

AT=0.26

U (m/s)
N N
o

Rey =16

AT=1.57

U (m/s)
n EN
o o

Rey =29
AT=9.55




Comparison with experiments Reyt et. al 2013

Axial mean velocity U,,, normalized with  ug,eion = 3U12naX /8¢

Numerical results Experimental result

—————— Re, =16.11
= — Re,, =29.19
Rayleigh

11

\wv

05}

Py . . . 1 . . . . 1 . . . e P, . . . 1
NG 20.25 0 0.25 05

x/L

X/

—> Displacement of the maximum values towards velocity nodes

Similiar wave guides type: wide cylindrical resonators
Similar thermal wall boundary conditions (fixed temperature)

Different acoustics for 6<Rey:

Simulations: presence of shocks  Experience: monofrequency wave
Different dimensions

Simulations: A =17.6mm,f = 20000Hz Experience: A =1.42m,f = 240Hz
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Streaming dynamics in the non linear regime

* Numerical study of transition from slow acoustic streaming (linear regime) to
fast acoustic streaming (non linear regime), in agreement with experiments

* Symmetry breakings for Rey;>1 and at Rey;=30 an additional vortex 1s

generated on the central line, close to velocity antinode , again in agreement
with experiments

* An intricate coupling between the mean temperature field and the streaming
flow.

49



Conclusion
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Incomplete review of current research in thermoacoustics:

Main observations:

thermoacoustic devices are based on simple principles.... but the actual physics
taking place 1s complex

numerical codes used for design (DELTA-EC, CRISTA,...) and estimate of
efficiency are based on a linear, periodic and 1D analysis when reality 1s very
different.

Main current academic research (object : establish some models that can be
included in numerical codes used for design)

detailed models of stack/regenerators with complex geometry
models/optimisation of heat exchangers : thermal and hydrodynamic edge
effects , variable geometry

fine description of coupling effects in: jet pumps, T, conical tubes
coupling effects : acoustic source/ waveguide, thermoacoustic engine/
alternator, thermoacoustic engine/TGP

fine description of nonlinear effects: acoustic streaming, NL propagation,
turbulence

51



