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Introduction. Magnetohydrodynamic (MHD) instabilities in aluminum re-
duction cells (see Fig. 1) have been the subject of several studies, since the pio-
neering work of Urata et al. [1]. The interaction between the electrolysis current
in the cell and the background magnetic field due to remote currents gives rise to a
strong magnetic force acting on the fluids inside the cell. Different kinds of waves
thus appear at the interface between a liquid aluminum layer and an electrolytic
bath lying on its top. These disturb the current distribution inside the cell so that
certain modes become unstable.

It has been shown by means of linear analysis [2, 3] that the longest waves tend
to be more unstable, and that resonance may occur between waves propagating
along perpendicular horizontal directions and coupled together by the magnetic
force. On the other hand, numerical simulations were performed either with indus-
trial codes [4] or a research code using finite elements [5]. These authors mainly
focused on obtaining the well-known metal pad roll, a particular instability of
which manifests itself as a rotating wave at the aluminum–electrolyte interface.

In order to solve the non-stationary magnetohydrodynamic equations in a
three-dimensional two-fluid system such as the aluminum reduction cell, we have
designed a novel numerical method by combining a level set technique together
with a finite volumes discretization. Moreover, our equations are written in terms
of the magnetic vector potential, thus ensuring the magnetic field to remain exactly
divergence-free.

Not only we found, as was done already by [4, 5], that the metal pad roll
becomes unstable for some critical value of the background vertical magnetic field
but we also simulated a different configuration which resulted in a vertical jet
of aluminum. These new results are backed up by a physical explanation of the
instability mechanism.
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Fig. 1. Approximate side view of an AP30 Hall–Héroult cell. The hidden dimension is about
13.6 m deep.
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1. Physical model. For the sake of simplicity, the system is idealized by
considering a single anode spanning over the top of the cell, and by approximating
the bottom of the cell to be rectangular. These geometric irregularities are believed
not to influence the essential physics of the flow.

1.1. Conservation equations. The flow in the cell is described by the un-
steady dissipative MHD equations [6]

∂B
∂t
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where ρ0 is the dimensionless density profile at equilibrium (when the aluminum–
electrolyte interface is flat and there is no fluid motion), D is the usual deforma-
tion rate tensor and f is the magnetic force. The scaling is based on a unitary
interaction parameter or Stuart number (ratio of the magnetic to inertial forces),
choosing the height of the cell as the length scale and the electrolyte’s density as
the reference mass density. Aluminum is 8.6 % more dense than the latter, so
|ρ − ρ0| < 0.086. Since the electromagnetics mostly depend on the electrolysis
current of magnitude J0, we set J0 as the electric current unit, and µ0J0L as
the magnetic field unit. The corresponding dimensionless numbers are the Froude
number Fr � 0.18, the Alfvén number Al � 0.64, and the effective hydrodynamic
Reynolds number Re � 76, which indeed consits in a zeroth order approximation
of the turbulent diffusion of momentum. The Lundqvist number is fluid-dependent
and ranges from 9× 10−2 in the aluminum to 104 times smaller in the electrolytic
bath. For the numerical simulations, the jump is restricted to a 102 ratio for
stability/cost considerations. Note, however, that this is almost physically equiv-
alent, since the bath can be considered as a perfect insulator with contrast to the
aluminum.

The electric current is dominated by the vertical uniform downward electroly-
sis current J0 = −J0ez, perturbed by a deflection j due to: (1) the displacement of
the aluminum–electrolyte interface; and (2) the motion of the electrically conduct-
ing fluids. The corresponding induced magnetic fields, B0 and b, respectively, add
to a background magnetic field Bbg due to remote current sources. These currents
are far enough from the system, so it is fair to assume that Bbg is uniform or at
most linear inside the cell. It is straightforward to show that the force, resulting
from the interaction of J0 with its self-induced field B0, is irrotational, i.e., will be
balanced by a gradient of pressure. Following [7, 8], we constrain Bbg accordingly
to so such a form that its interaction with J0 will give rise to no motion of the fluids.
The net magnetic force can therefore be written as f = J0×b+j×(Bbg + B0 + b).

1.2. Magnetic potential formulation. To enforce the divergence-free condi-
tion on b, the magnetic field is modeled in terms of the magnetic vector potential
a, uniquely defined by ∇ × a = b and ∇ · a = 0 in virtue of Helmholtz’ theorem.
Its time evolution is given by:

∂a
∂t

= −∇ϕ + u× (Bbg + B0 + ∇ × a) +
1

Lu
∇2a −

(
1

Lu
− 1

Lu0

)
µ0J0, (2)

where Lu0 is the vertical profile of the equilibrium Lundqvist number. It is straight-
forward to show that the curl of the latter equation reduces to Eq. (1). The
function ϕ is determined by the gauge condition ∇ · a = 0, which allows for a
simple, uncoupled diffusion term. While the usual first terms in Eq. (2) may
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be self-explanatory, the last one infers from the deflection of the electric current
j = −∇2a due to the displacement of the interface. Taking the laplacian of Eq. (2)
shows that the contribution of the last term to j is ∇2(1/Lu)J0−(J0 ·∇)∇(1/Lu),
which simply depicts the fact that the current tends to flow through the path with
the shortest interpolar distance, i.e., the least resistive one. Even though there is a
discontinuity in the Lundqvist number at the interface, it makes sense to use gra-
dients of Lu since, as we will see in Sec. 2.1, a continuous smooth approximation
is made.

1.3. Boundary conditions. The velocity field is subject to no-slip, no-
penetration boundary conditions, so that u = 0 on the walls. Then, we set no-
penetration conditions on the electric current, i.e., j · en = 0, which corresponds
to insulating side and bottom walls, together with steady control of the anodic
current. This implies ∇2a · en on the magnetic potential, but it is straightforward
to show that the latter can be obtained by enforcing en · ∇(a × en) = en · a = 0,
which is much simpler to implement.

2. Numerical method.
2.1. Level set technique. The motion of the interface is implicitly solved by

advecting a scalar level set function φ, whose zero-level coincides with the interface
[9, 10, 11]. The discontinuities at the interface are smoothened as a function of
the distance to the interface. For numerical stability, this smooth transition must
span over at least a few grid points. An effective interface width of 2.5 grid points
was found to be empirically well suitable for a 102 conductivity jump ratio.

2.2. Discretization. A standard finite volumes spatial discretization with
staggered meshes for u and a [12] allowing for exact projections is used. The
averaging–reconstruction cycle is cut down to a less dissipative single reconstruc-
tion process thanks to the regular grid.

Time integration is achieved with a second order Adams–Bashforth scheme
for all terms but the diffusive ones. The viscous term uses a semi-implicit second
order Crank–Nicolson scheme, while the magnetic diffusion term is solved with a
fully-implicit backward Euler, due do the very large magnetic diffusion coefficient.

2.3. Magnetic potential. Keeping the magnetic field as a divergence-free
field is a common problem in numerical MHD. Without an efficient divergence-
cleaning method [13, 14], the numerical errors would give rise to artificial “mag-
netic monopoles” which cause non-physical flow elements to appear [15]. The
magnetic potential formulation allows for keeping ∇ · b = 0 exactly, though it is
possible that the gauge condition ∇ · a = 0 be not satisfied exactly. However, due
to the presence of a (physically meaningless) gradient term in Eq. (2), an efficient
projection is easily achieved, such that of the velocity field.

3. Results.
3.1. Metal pad roll. Here, the background magnetic field Bbg is assumed

to be uniform and vertical. As in [4, 5], we obtained the rotating wave known
as the metal pad roll [16, 2, 3]. By comparing the periods of these rolling waves
for different system sizes, we observed that they correspond to gravity waves,
subjected not only to viscous/turbulent damping but also to the net stabilizing
effect of the induced currents. The stability threshold was observed to depend on
both the intensity of Bbg and the magnitude of the damping.

3.2. Vortex pumping. A gradient of the background magnetic field is now
superimposed on the uniform field from the previous section. The gradient in
the horizontal component interacts with the vertical imposed current to induce a
rotation of the two fluids. The force being equal in both layers with different mass
densities, the velocity magnitude becomes higher in the bath than in the aluminum.
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The centrifugal pressure discontinuity at the interface infers a curvature to it,
which in turn causes a disturbance of the electric currents. These then interact
with the vertical component of the background magnetic field to lead to instability.
Our numerical simulations show that it takes the form a spinning vertical jet of
aluminum.

4. Conclusion. Our new, fully three-dimensional numerical method based
on a level set technique proved to be sucessful in reproducing the metal pad roll
in aluminum reduction cells, as well as simulating other vortex-based MHD in-
stability. In addition to keeping the magnetic field exactly divergence-free, the
vector potential formulation allows for a simple implementation of no-penetration
conditions on the electric current disturbance.
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