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Introduction. An industrial electrolysis cell used to produce primary alu-
minium is sensitive to waves at the interface of liquid aluminium and electrolyte.
The interface waves are similar to stratified sea layers [1], but the penetrating
electric current and the associated magnetic field are intricately involved in the
oscillation process, and the observed wave frequencies are shifted from the purely
hydrodynamic ones [2]. The interface stability problem is of great practical impor-
tance because the electrolytic aluminium production is a major electrical energy
consumer, and it is related to environmental pollution rate. The stability analysis
was started in [3] and a short summary of the main developments is given in [2].
Important aspects of the multiple mode interaction have been introduced in [4],
and a widely used linear friction law first applied in [5]. In [6] a systematic pertur-
bation expansion is developed for the fluid dynamics and electric current problems
permitting reduction of the three-dimensional problem to a two-dimensional one.
The procedure is more generally known as “shallow water approximation” which
can be extended for the case of weakly non-linear and dispersive waves. The
Boussinesq formulation permits to generalise the problem for non-unidirectionally
propagating waves accounting for side walls and for a two fluid layer interface
[1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlin-
ear case have started in [7] where the basic equations are derived, including the
nonlinearity and linear dispersion terms. An alternative approach for the nonlin-
ear numerical simulation for an electrolysis cell wave evolution is attempted in [8
and references there], yet, omitting the dispersion terms and without a proper ac-
count for the dissipation, the model can predict unstable waves growth only. The
present paper contains a generalisation of the previous non-linear wave equations
[7] by accounting for the turbulent horizontal circulation flows in the two fluid
layers. The inclusion of the turbulence model is essential in order to explain the
small amplitude self-sustained oscillations of the liquid metal surface observed in
real cells, known as “MHD noise”. The fluid dynamic model is coupled to the
extended electromagnetic simulation including not only the fluid layers, but the
whole bus bar circuit and the ferromagnetic effects [9].

1. Shallow layer non-linear wave model. An aluminium electrolysis
cell is a part of a row of similar cells, where each cell is connected in series to
the neighbours by a complex arrangement of current-carrying bus bars shown in
Fig. 1 for a particular case of 500 kA cells at the end of line. The electric current
to the individual cell is supplied from above via massive anode bus bars made of
solid aluminium, from which anode rods connect to the carbon anodes. The liquid
electrolyte layer beneath the anode blocks is relatively poor electrical conductor
of a small depth (4–6 cm) if compared to its horizontal extension (2–4×6–20 m).
The electrolyte density is of little difference to the liquid aluminium pool created
as the result of electrolytic reaction as the bottom liquid layer of depth 20–30
cm. For the “shallow water” approximation the horizontal dimensions Lx and Ly

are assumed to be much larger than the typical depth H , and the interface wave
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Fig. 1. 500 kA cell busbars and position of the cell in the row.

amplitude A is assumed to be small relative to the depth. Thus the two small
parameters of the problem are the depth δ = H/L and the amplitude ε = A/H.

With the purpose to derive the Boussinesq equations for the wave motion
we will need to estimate the terms in the full three-dimensional Navier–Stokes
equations. According to the small depth assumption a stretched vertical coordinate
and the nondimensional interface deformation of small amplitude are represented
as

z̄ = z/(Lδ), H0/(Lδ) = H̄0 = εζ(x, y, t) .

With these definitions the nondimensional fluid flow equations (continuity, hori-
zontal momentum and vertical momentum) are respectively:

∂kuk + δ−1∂z̄w = 0 (1)

∂tuj + uk∂kuj + δ−1w∂z̄uj = −∂jp + Re−1(δ−2∂z̄ ν̄e∂z̄uj + ∂kν̄e∂kuj) + Efj (2)

∂tw + uk∂kw + δ−1w∂z̄w = δ−1∂z̄p + Re−1(δ−2∂z̄ν̄e∂z̄w + ∂kν̄e∂kw) + Efz − δ−1 , (3)

where the summation convention is assumed over the repeating indexes k (equal
to 1 or 2, respectively for x, y coordinates), νe is the nondimensional effective tur-
bulent viscosity, fj are the components of electromagnetic force, and the last term
in (3) represents the constant gravity. The nondimensional governing parameters
are the Reynolds number and the electromagnetic interaction parameter:

Re = Lu0/ν , E = (IB0/L2)/(ρu2
0/L) = IB0/(L2ρgδ) .

The Boussinesq equations can be derived formally if representing the velocity as
an expansion in the small amplitude parameter:

u(x, y, z, t) = u0(x, y, t) + εuε(x, y, z, t) + o(ε) , (4)
where u0 is the horizontal circulation, uε is the wave related velocity. An impor-
tant feature of the shallow water approximation is the depth averaging procedure
defined for the variables in each layer identified with number “i” . E.g., for the
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Fig. 2. Horizontal velocity in the two layers for the 500 kA cell.

horizontal velocity components the depth average is

ûj(x, y, t) =
(
H̄i − H̄0

)−1
∫

uj dz̄ , (5)

and similarly for other physical quantities. The same depth averaging procedure
formally can be applied to the fluid flow equations (1)–(3). In this short com-
munication we will present only the final equations. The depth average of the
continuity equation (1) for each of the two fluid layers is

ε∂tζ = ∂j

[(
H̄i − εζ

)
ûj

]
, (6)

which is accurate to all orders in ε and δ. When the depth averaging procedure
(5) is applied to the horizontal momentum equations (2), the equations for the
horizontal circulation u0 plus ε-order ûε wave motion: û = û0 + ûε are

∂tûj + ûk∂kûj = −∂jp(H̄0) − ε∂jζ − μûj + Re−1∂kν̄e∂kû0j + Ef̂j − 1

2
δEH̄i∂jf0z (7)

where the continuity of the pressure at the interface is satisfied by introducing the
pressure at the common interface. The nonlinear law for the friction at the top and
bottom of the fluid layers is introduced in (7). Models for the friction coefficient
μ(u, t) and the effective turbulence viscosity νe(x, y, t) will be described elsewhere.
The equations of momentum (7) and continuity (6) for the two fluid layers can
be combined in a single nonlinear wave equation for the interface ζ(x, y, t) by
taking the time derivative of (6), the horizontal divergence of (7), and finally
the difference between the resulting equations for the two layers to eliminate the
common pressure at the interface p(H̄0):

ε
〈
ρ/H̄

〉
∂ttζ + ε

〈
μρ/H̄

〉
∂tζ + ε

〈
ρ
〉
∂jjζ =

E
〈
∂j f̂j

〉 − δE

〈
1

2
H̄∂jj f̂z

〉
− ε

〈
ρ/H̄∂tj(ζuj0) + μρ/H̄∂j(ζuj0)

〉 − 〈
ρ∂j(ûk∂kûj)

〉 (8)

where 〈F 〉 = F1 − F2 denotes difference of the variable in the two layers.

2. Horizontal circulation effect on the waves. The equation (8) is
formally a generalisation of the stability models used previously. By setting pa-
rameters ε = δ = 0 the linear model is recovered [6]. In the following examples we
will use the full electromagnetic model suitable for realistic cell simulations. The
magnetic field is computed from the 5 cells in the same row (Fig. 1) and 5 cells
in the return row (not shown). The cell is positioned close to the end of line in
order to make it less stable and to generate small amplitude MHD sustained qua-
sistationary oscillations. Further from the end of line the cell of the present design
is absolutely stable. The velocity field is turbulent and time dependent. However
the horizontal, depth averaged circulation reaches almost stationary distribution,
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Fig. 3. Left: Interface at fixed time 500 s: includ-
ing horizontal circulation (top), without horizontal
circulation (middle), equal circulation in both layers
(bottom). Right: Comparison of the interface oscil-
lations: with and without the horizontal circulation
effect.

which is different in each of fluid layers because of the electric current distribu-
tion variation. The horizontal electric current in the aluminium is responsible for
the variation in the symmetric vortex structure, which is usually observed in the
electrolyte layer (Fig. 2). The horizontal circulation vortices create a pressure
gradient contributing to the deformation of the free surface. Typically an intense
vortex is associated with a dip in its centre. For the two layers the effect on the
common interface is in balance when two equal vortices are positioned one above
the other because the last term in (8), responsible for the effect, is approaching
zero as the densities of the two fluids are very close. Instructive comparisons can
be made for the interface at the same time moments if accounting for the horizon-
tal circulation and without the effect. Fig. 3 (top) clearly shows the dips at the
centre and the right side where the aluminium vortices are more intense, and an
oscillating wave crest on the left where the electrolyte circulation is more intense.
There is nothing like this in the case when the horizontal circulation effect in (8)
is set to zero, Fig. 3 (middle). The corresponding self sustained oscillation pattern
is shown in Fig. 3,right. The wave frequency is nearly the same in both cases,
but the interface topology and the amplitude are quite different. The effect of the
vortices can be eliminated almost completely also if making the vortices equal in
both layers, Fig. 3 (bottom). In the latter case the additional pressure variation
exerts a stabilising effect on the interface. This observation can be an important
tool for the more stable cell design, particularly in the end of line position.
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