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At present, rotating magnetic fields (RMF) and traveling magnetic fields
(TMF) are widely used in metallurgical technologies of the production of contin-
uous ingots and castings, alloys of ferrous and non-ferrous metals, etc. Electrical
parameters of electromagnetic stirring (EMS) are computed basing on technolog-
ically necessary values of mean velocity of the turbulent flow excited by EMS.
Therefore, it is rather urgent to develop simple engineering methods of mean ve-
locity computation.

A mathematical model of a two-dimensional mean turbulent flow of a viscous
incompressible electrically conducting fluid excited by an amplitude-modulated
two-dimensional RMF in vessels of circular and rectangular cross-sections is for-
mulated in an induction-free approximation using a semi-empirical model of “ex-
ternal” friction. A two-dimensional RMF is excited by an ideal inductor with one
pair of poles, which constitutes a cylindrical cavity of circular cross-section with
the radius R0 cut out in an ideal ferromagnetic (µ → ∞), with an infinitely thin
current layer traveling over its surface.

Electrodynamic processes in a conducting medium contained in the inductor
bore are described in a cylindrical coordinate system r, φ, z by the following dimen-
sionless equation for the z-component of the magnetic induction vector potential
(b = rota):
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of the inductor (hereinafter all the variables are not overlined). Eq. (1) is solved
with the boundary condition
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= − [1 + e sin 2π (kτ − ϕ+ β)] sin 2π (τ − ϕ) , (2)

where e is the dimensionless depth of amplitude modulation, β is the phase shift
between the carrier and modulating waves,2πk is a dimensionless modulation fre-
quency.

In the approximation of small � < 1, the solution of problems (1), (2) is:

az = − [
r sin 2πθ0 − e r2 (cos 4πθ2 + cos 4πθ1) /4

]
, (3)

where θ0 = τ − ϕ; θ1 = (k − 1)τ + β; θ2 = (k + 1)τ/2 − ϕ+ β/2.
Using the known relationships between the vectorial potential, current den-

sity and r- and φ-components of the magnetic induction, we obtain the following
expression:
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where S6 = 2k − 3 + Ω; S7 = 2k − 1 − Ω; S8 = k − 2 + Ω.
We write (4) in the form

rotz f = �0

[
f0(x, y) + e · f1(x, y, τ)/2

]
/2. (5)

In a general case, using the model of “external” friction, a flow function of the
non-stationary MHD flow is described by the following dimensionless equation in
the Cartesian system of coordinates x, y, z:
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with boundary conditions on the contour Γ:
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structural constant representing the only empirical parameter of the mathematical
model, whose value determines the “external” friction coefficient and the dynamic
characteristics of the mean turbulent flow.

Using the assumption Re−1
ω � λ∗, we obtain:
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ψz|Γ = 0; ψz(τ) = ψz(τ + 1) (10)

We seek the solution of the quasi-linear problem (9), (10) as a sum of a stationary
and non-stationary solutions:

ψz = Ψ0(x, y) + Ψ1(x, y, τ). (11)

The stationary problem
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The non-stationary problem has the form
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Since the arguments of trigonometric functions contain a variable φ = arctg (y/x),
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The solution of (14), (15) has the form:
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Expressions for ψ1Cmij , ψ∗
1Cmij can be obtained by substituting (Fmλ

∗ − Φmωm)
in the integrands with (Fmωm + Φmλ

∗).
To compute the value of Ω appearing in the zero approximation of λ∗, the

following equation is used:

Ω2−ε
0 +Qε
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]
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[
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]
= 0 , (17)

where Qε = Ha2 · δz/Re1−ε
ω · Cε.
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Fig. 1.

Contours of stationary and non-stationary flows at different moments of time
computed using Eqs. (13), (16) are presented in Fig. 1.
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